Skip to main content
Log in

Limestones under salt decay tests: assessment of pore network-dependent durability predictors

  • Special Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Three Portuguese limestones (two grainstones, Semi-rijo and Moca Creme commercial types, and a travertine) were subjected to salt crystallisation test (EN 12370:1999). Grainstones specimens showed higher weight loss than the travertine ones. Results are discussed, using parametric and nonparametric statistics, in relation to pore space characteristics that have been considered durability predictors, evaluated at the macroscopic (water imbibition) and microscopic (mercury injection porosimetry) levels. Several of the pore-space parameters indicate differences between grainstones and travertine, but these differences are much lower than the differences in weight loss. Results of the durability dimensional estimator (DDE) seem to present a discrepancy, with higher values in the rock type having lower weight loss (travertine). Additionally, weathering patterns of travertine samples show marked irregularities (a feature that is not assessed by weight loss). These irregularities are attributed to heterogeneous spatial distribution of detritic components (a feature that is not assessed by pore-space parameters). Comparing the grainstones, Moca Creme showed higher values of mass loss and several durability predictors suggested noteworthy differences in relation to Semi-rijo. However, these differences are much lower than differences in weight loss. Calculated crystallisation pressures are even higher for Semi-rijo. It is proposed that petrographical aspects of Moca Creme, namely heterogeneity related to the presence of bioclasts and veinlets, could contribute to explain the higher weathering susceptibility of this rock type. These results highlight the need to include petrographical features in assessments of durability and the usefulness of visual description on the characterization of salt weathering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alves C (2009) Salt weathering of natural building stones: a review of the influence of rock characteristics. In: Cornejo DN, Haro JL (eds) Building materials: properties, performance and applications. Nova Science Publishers, New York, pp 57–94

    Google Scholar 

  • Alves C, Sequeira Braga MA, Hammecker C (1996) Water transfer and decay of granitic stones in monuments. CR Acad Sci IIa 323:397–402

    Google Scholar 

  • Alves C, Figueiredo C, Sequeira Braga MA, Maurício A, Aires-Barros L (2009) Aesthetic failure of limestones under salt crystallisation tests. Proceedings IRF’2009, 3rd international conference on integrity, reliability & failure, Porto, FEUP, Porto. CD-ROM publication, Portugal

    Google Scholar 

  • Angeli M, Bigas JP, Benavente D, Menéndez B, Hébert R, David C (2007) Salt crystallization in pores: quantification and estimation of damage. Environ Geol 52:205–213. doi:10.1007/s00254-006-0474-z

    Article  Google Scholar 

  • Angeli M, Benavente D, Bigas JP, Menéndez B, Hébert R, David C (2008) Modification of the porous network by salt crystallization in experimentally weathered sedimentary stones. Mater Struct 41:1091–1108. doi:10.1617/s11527-007-9308-z

    Article  Google Scholar 

  • Arnold A, Zehnder K (1991) Monitoring wall paintings affected by soluble salts. The conservation of wall paintings, Getty Conservation Institute, pp 103–135. Available online (August 2010) http://getty.edu/conservation/publications/pdf_publications/wall_paintings.pdf

  • Bear J (1972) Dynamics of fluids in porous media. American Elsevier Pub. Co., New York. Dover Edition with corrections, 1988, Dover Publications, New York

  • Begonha A, Teles M (2000) Study of stone deterioration in the Palácio do Freixo in Oporto. In: Fassina V (ed) Proceedings of the 9th international congress on deterioration and conservation of stone, Elsevier Science BV, Amsterdam, vol 2, pp 593–601

  • Benavente D, García del Cura MA, Bernabéu A, Ordóñez S (2001) Quantification of salt weathering in porous stones using an experimental continuous partial immersion method. Eng Geol 59:313–325. doi:10.1016/S0013-7952(01)00020-5

    Article  Google Scholar 

  • Benavente D, García del Cura MA, Fort R, Ordóñez S (2004) Durability estimation of porous building stones from pore structure and strength. Eng Geol 74:113–127. doi:10.1016/j.enggeo.2004.03.005

    Article  Google Scholar 

  • Benavente D, Cueto N, Martínez-Martínez J, García del Cura MA, Cañaveras JC (2007) The influence of petrophysical properties on the salt weathering of porous building rocks. Environ Geol 52:215–224. doi:10.1007/s00254-006-0475-y

    Article  Google Scholar 

  • Birginie JM (2000) Seawater absorption, permeability evolution and deterioration assessment of building stones subjected to marine exposure. In: Fassina V (ed) Proceedings of the 9th international congress on deterioration and conservation of stone, Elsevier Science BV, Amsterdam, vol 1, pp 313–321

  • Buj O, Gisbert J (2010) Influence of pore morphology on the durability of sedimentary building stones from Aragon (Spain) subjected to standard salt decay tests. Earth Environ Sci 61:1327–1336. doi:10.1007/s12665-010-0451-4

  • Cardell C, Delalieux F, Roumpopoulos K, Moropoulou A, Auger F, VanGrieken R (2003) Salt-induced decay in calcareous stone monuments and buildings in a marine environment in SW France. Constr Build Mater 17:165–179. doi:10.1016/S0950-0618(02)00104-6

    Article  Google Scholar 

  • Cardell C, Benavente D, Rodríguez-Gordillo J (2008) Weathering of limestone building material by mixed sulfate solutions. Characterization of stone microstructure, reaction products and decay forms. Mater Charact 59:1371–1385. doi:10.1016/j.matchar.2007.12.003

    Article  Google Scholar 

  • Carvalho J (1995) Calcários Ornamentais e Industriais na Área de Pé da Pedreira (Maciço Calcário Estremenho). Boletim de Minas 32:25–39 (in Portuguese)

  • Carvalho J, Manuppella G, Moura AC (2000) Calcários Ornamentais Portugueses. Boletim de Minas 37:223–232 (in Portuguese)

  • Cassar J (2002) Deterioration of the globigerina limestone of the Maltese Islands. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural stone, weathering phenomena, conservation strategies and case studies, Special Publications 205. Geological Society of London, London, pp 33–49. doi:10.1144/GSL.SP.2002.205.01.04

  • Chin IR (2007) Travertine: successful and unsuccessful performance, preconceived notions, and mischaracterizations. J ASTM Int 7 (online publication). doi:10.1520/JAI100890

  • Correns CW, Steinborn W (1939) Experimente zur Messung und Erkla¨rung der sogenannten Kristallisationskraft. Z Krist (A) 101:117–133. English transtlation published in Flatt RJ, Steiger M, Scherer GW (2007) A commented translation of the paper by C.W. Correns and W. Steinborn on crystallization pressure. Environ Geol (2007) 52:187–203. doi:10.1007/s00254-006-0509-5

  • Coussy O (2006) Deformation and stress from in-pore drying-induced crystallization of salt. J Mech Phys Solids 54:1517–1547. doi:10.1016/j.jmps.2006.03.002

    Article  Google Scholar 

  • Cultrone G, Russo LG, Calabrò C, Urosevič M, Pezzino A (2008) Influence of pore system characteristics on limestone vulnerability: a laboratory study. Environ Geol 54:1271–1281. doi:10.1007/s00254-007-0909-1

    Article  Google Scholar 

  • Dessandier D, Bromblet P, Mertz JD (2000) Durability of Tuffeau stone in buildings: influence of mineralogical composition and microstructural properties. In: Fassina V (ed) Proceedings of the 9th international congress on deterioration and conservation of stone, Elsevier Science BV, Amsterdam, vol 1, pp 69–78

  • DGGM-Direcção-Geral de Geologia e Minas (1983, 1984, 1985) Catálogo de Rochas Ornamentais Portuguesas, vol I, II, III (in Portuguese)

  • Dionísio A, Sequeira Braga MA, Waerenborgh JC (2009) Clay minerals and iron oxides-oxhydroxides as fingerprints of firing effects in a limestone monument. Appl Clay Sci 42:629–638. doi:10.1016/j.clay.2008.05.003

    Article  Google Scholar 

  • Doehne E (2002) Salt weathering: a selective review. In: Siegesmund GS, Vollbrecht A, Weiss T (eds) Natural stone, weathering phenomena, conservation strategies and case studies, Special Publications 205. Geological Society of London, London, pp 51–64. doi:10.1144/GSL.SP.2002.205.01.05

  • Doornkamp JC, Ibrahim HAM (1990) Salt weathering. Progress Phys Geogr 14:335–348. doi:10.1177/030913339001400303

    Article  Google Scholar 

  • Edwards DG (2002) Multiple comparisons. In: El-Shaarawi AH, Piegorsch WW (eds) Encyclopedia of environmetrics, vol 3. Wiley, Chichester, pp 1314–1319

    Google Scholar 

  • Espinosa Marzal RM, Scherer GW (2008) Crystallization of sodium sulfate salts in limestone. Environ Geol 56:605–621. doi:10.1007/s00254-008-1441-7

    Article  Google Scholar 

  • Espinosa RM, Franke L, Deckelmann G (2008) Model for the mechanical stress due to the salt crystallization in porous materials. Constr Build Mater 22:1350–1367. doi:10.1016/j.conbuildmat.2007.04.013

    Article  Google Scholar 

  • Figueiredo C, Folha R, Mauricio A, Alves C, Aires-Barros L (2010a) Contribution to the technological characterization of two widely used Portuguese dimension stones: the ‘Semi-rijo’ and ‘Moca Creme’ stones. In: Prikryl R, Török Á (eds) Natural stone resources for historical monuments, Special Publications 333. Geological Society, London, pp 153–163. doi:10.1144/SP333.15

  • Figueiredo C, Folha R, Mauricio A, Alves C, Aires-Barros L (2010b). Pore structure and durability of Portuguese limestones: a case study. In: Smith J, Gómez-Heras M, Viles HA, Cassar J (eds) Limestone in the built environment: present-day challenges for the preservation of the past, Special Publications 331, Geological Society of London, London, pp 157–169. doi:10.1144/SP331.14

  • Fitzner B, Heinrichs K, Volker M (1996) Model for salt weathering at Maltese Globigerina limestones. In: Zezza F (ed) Origin, mechanisms and effects of salt on degradation of monuments in marine and continental environments, protection and conservation of the European cultural heritage research report n. 4. pp 331–344

  • Flatt RJ, Steiger M, Scherer GW (2007) A commented translation of the paper by CW Correns and W Steinborn on crystallization pressure. Environ Geol 52:187–203. doi:10.1007/s00254-006-0509-5

    Article  Google Scholar 

  • Gatt PA (2006) Model of limestone weathering and damage in masonry: sedimentological and geotechnical controls in the Globigerina limestone formation (Miocene) of Malta. Xjenza 11:30–39

    Google Scholar 

  • Gauri KL, Bandyopadhyay JK (1999) Carbonate stone: chemical behavior. Durability and conservation. Wiley, New York

    Google Scholar 

  • Goudie AS (1986) Laboratory simulation of ‘the wick effect’ in salt weathering of rock. Earth Surf Proc Land 11:275–285. doi:10.1002/esp.3290110305

    Article  Google Scholar 

  • Goudie AS (1999) Experimental salt weathering of limestones in relation to rock properties. Earth Surf Proc Landf 24:715–724. doi:10.1002/(SICI)1096-9837(199908)24:8<715:AID-ESP4>3.0.CO;2-#

    Article  Google Scholar 

  • Goudie A, Viles H (1997) Salt weathering hazards. Wiley, Chichester

    Google Scholar 

  • Hammecker C (1995) The Importance of the petrophysical properties and external factors in the stone decay on monuments. PAGEOPH 145:337–361. doi:10.1007/BF00880275

    Article  Google Scholar 

  • Hammecker C, Jeannette D (1994) Modelling the capillary imbibition kinetics in sedimentary rocks: role of petrographical features. Transp Porous Med 17:285–303. doi:10.1007/BF00613588

    Article  Google Scholar 

  • IGM-Instituto Geológico e Mineiro (1995) Catálogo de Rochas Ornamentais Portuguesas, vol IV (in Portuguese)

  • ISRM-International Society for Rock Mechanics (1979) Suggested methods for determining water content, porosity, density, absorption and related properties and swelling and slake-durability index properties. Int J Rock Mech Min Sci 16:141–156. doi:10.1016/0148-9062(79)90287-0

    Google Scholar 

  • Kamh GME (2007) Environmental impact on construction limestone at humid regions with an emphasis on salt weathering, Al-hambra islamic archaeological site, Granada City, Spain: case study. Environ Geol 52:1539–1547. doi:10.1007/s00254-006-0598-1

    Article  Google Scholar 

  • La Iglesia A, González V, López-Acevedo V, Viedma C (1997) Salt crystallization in porous construction materials I estimation of crystallization pressure. J Cryst Growth 177:111–118. doi:10.1016/S0022-0248(96)01072-X

    Article  Google Scholar 

  • Lewin SZ (1982) The Mechanism of masonry decay through crystallization. In: Conservation of historic stone buildings and monuments, National Academy Press, Washington D.C., pp 120–144

  • Lewin S (1989) The susceptibility of calcareous stones to salt decay. In: Zezza F (ed) The conservation of monuments in the Mediterranean Basin: the influence of coastal environment and salt spray on limestone and marble, Proceedings of the 1st International Symposium, Grafo Edizioni, Brescia, pp 59–63

  • López Acevedo V, Viedma C, Gonzalez V, LaIglesia A (1997) Salt crystallization in porous construction materials. II. Mass transport and crystallization processes. J Cryst Growth 182:103–110. doi:10.1016/S0022-0248(97)00341-2

    Article  Google Scholar 

  • Manuppella G, Moreira JCB, Costa JRG, Crispim JA (1985) Calcários e Dolomitos do Maciço Calcário Estremenho. Estudos, Notas e Trabalhos 27:3–48 (in Portuguese)

  • McGreevy JP, Smith BJ (1984) The possible role of clay minerals in salt weathering. Catena 11:169–175. doi:10.1016/0341-8162(84)90006-7

    Google Scholar 

  • Mertz J-D (1991) Structures de porosité et propriétés de transport dans les grès. Sciences géologiques 90, University Louis Pasteur, Strasbourg (in French)

  • Miglio BF, Richardson DM, Yates TS, West D (2000) Assessment of the durability of porous limestones: specification and interpretation of test data in UK practice. In: Dimension stone cladding: design, construction, evaluation, and repair, STP 1394, ASTM-American Society for Testing and Materials, West Conshohocken, PA, pp 57–70. doi:10.1520/STP13539S

  • Minium EW, Clarke RC, Coladarci T (1998) Elements of statistical reasoning. Wiley, New York

    Google Scholar 

  • Moh’d BK, Howarth RJ, Bland CH (1996) Rapid prediction of building research establishment limestone durability class from porosity and saturation. Q J Eng Geol 29:285–297. doi:10.1144/GSL.QJEGH.1996.029.P4.03

    Article  Google Scholar 

  • Nicholson DT (2001) Pore properties as indicators of breakdown mechanisms in experimentally weathered limestones. Earth Surf Proc Landf 26:819–838. doi:10.1002/esp.228

    Article  Google Scholar 

  • Nijs R, DeGeyter G (1991) Local natural substitutes for weathered historical building stones in Flanders. In: Baer NS, Sabbioni C, Sors AI (eds) Science, Technology and European Cultural Heritage. Butterworth Heinemann, Oxford, pp 671–674

    Google Scholar 

  • Oguchi CT, Yuasa H (2010). Simultaneous wetting/drying, freeze/thaw and salt crystallization experiments of three types of Oya tuff. In: Prikryl R, Török Á (eds) Natural stone resources for historical monuments, Special Publications 333, Geological Society, London, pp 59–72. doi:10.1144/SP333.6

  • Ordóñez S, Fort R, García del Cura MA (1997) Pore size distribution and the durability of a porous limestone. Q J Eng Geol 30:221–230. doi:10.1144/GSL.QJEG.1997.030.P3.04

    Article  Google Scholar 

  • Pavía Santamaria S, Cooper TP, Caro Calatayud S (1996) Characterisation and decay of monumental sandstone in La Rioja, Northern Spain. In: Smith BJ, Warke PA (eds) Processes of urban stone decay. Donhead Publishing, London, pp 125–132

    Google Scholar 

  • Pettijohn FJ (1975) Sedimentary rocks. Harper & Row, New York

    Google Scholar 

  • Pilkey OH, Pilkey-Jarvis L (2007) Useless arithmetic: why environmental scientists can’t predict the future. Columbia University Press, New York

    Google Scholar 

  • Rivas T, Prieto B, Silva B, Birginie JM (2000) Comparison between traditional and chamber accelerated ageing tests on granitic rocks. In: Fassina V (ed) Proceedings of the 9th international congress on deterioration and conservation of stone, Elsevier Science BV, Amsterdam vol 1, pp 171–180

  • Robinson DA, Williams RBG (1996) An analysis of the weathering of Wealden sandstone churches. In: Smith BJ, Warke PA (eds) Processes of urban stone decay. Donhead Publishing, London, pp 133–149

    Google Scholar 

  • Rodriguez-Navarro C, Doehne E (1999) Salt weathering: influence of evaporation rate, supersaturation and crystallization pattern. Earth Surf Process Landf 24:191–209. doi:10.1002/(SICI)1096-9837(199903)24:3<191:AID-ESP942>3.0.CO;2-G

    Article  Google Scholar 

  • Rodriguez-Navarro C, Doehne E, Sebastian E (2000) How does sodium sulfate crystallize? Implications for the decay and testing of building materials. Cem Concr Res 30:1527–1534. doi:10.1016/S0008-8846(00)00381-1

    Article  Google Scholar 

  • Romariz C (1960) Estudo Geológico e Petrográfico da Área tifónica de Soure. Comunicações dos Serviços Geológicos de Portugal. Tomo XLIV, Lisbon (in Portuguese)

  • Rossi-Manaresi R, Tucci A (1991) Pore structure and the disruptive or cementing effect of salt crystallization in various types of stone. Stud Conserv 36:53–58

    Article  Google Scholar 

  • Rothert E, Eggers T, Cassar J, Ruedrich J, Fitzner B, Siegesmund S (2007) Stone properties and weathering induced by salt crystallization of Maltese Globigerina Limestone. In: Přikryl R, Smith BJ (eds) Building stone decay: from diagnosis to conservation, Special Publications 271, Geological Society of London, London, pp 189–198. doi:10.1144/GSL.SP.2007.271.01.19

  • Rothman KJ (1990) No adjustments are needed for multiple comparisons. Epidemiology 1:43–46

    Article  Google Scholar 

  • Ruedrich J, Seidel M, Rothert E, Siegesmund S (2007) Length changes of sandstones caused By salt crystallization. In: Přikryl R, Smith BJ (eds) Building stone decay: from diagnosis to conservation, Special Publications 271, Geological Society of London, London, pp 199–209. doi:10.1144/GSL.SP.2007.271.01.20

  • Ruiz-Agudo E, Mees F, Jacobs P, Rodriguez-Navarro C (2007) The role of saline solution properties on porous limestone salt weathering by magnesium and sodium sulphates. Environ Geol 52:269–281. doi:10.1007/s00254-006-0476-x

    Article  Google Scholar 

  • Scherer GW (1999) Crystallization in pores. Cem Concr Res 29:1347–1358. doi:10.1016/S0008-8846(99)00002-2

    Article  Google Scholar 

  • Scherer GW (2004) Stress from crystallization of salt. Cem Concr Res 34:1613–1624. doi:10.1016/j.cemconres.2003.12.034

    Article  Google Scholar 

  • Skoulikidis Th, Kalifatidou E, Tsakona K, Evangelatou M (1996) Salt spray tests on untreated and treated marble and stones. In: Zezza F (ed) Origin, mechanisms, and effects of salts on degradation of monuments in marine and continental environments, protection and conservation of the european cultural heritage research report no. 4. European Commission, Brussels, pp 87–98

    Google Scholar 

  • Smith BJ, Turkington AV, Warke PA, Basheer PAM, McAlister JJ, Meneely J, Curran JM (2002) Modelling the rapid retreat of building sandstones: a case study from a polluted maritime environment. In: Siegesmund GS, Vollbrecht A, Weiss T (eds) Natural stone, weathering phenomena, conservation strategies and case studies, Special Publications 205, Geological Society of London, London pp 347–362. doi:10.1144/GSL.SP.2002.205.01.25

  • Sousa LMO, Suarez del Rio LM, Calleja L, Ruiz de Argandona VG, Rodriguez Rey A (2005) Influence of microfractures and porosity on the physico-mechanical properties and weathering of ornamental granites. Eng Geol 77:153–168. doi:10.1016/j.enggeo.2004.10.001

    Article  Google Scholar 

  • Steiger M (2005a) Crystal growth in porous materials-I: the crystallization pressure of large crystals. J Cryst Growth 282:455–469. doi:10.1016/j.jcrysgro.2005.05.007

    Article  Google Scholar 

  • Steiger M (2005b) Crystal growth in porous materials—II: Influence of crystal size on the crystallization pressure. J Crys Growth 282(480):470–481. doi:10.1016/j.jcrysgro.2005.05.008

    Article  Google Scholar 

  • Steiger M, Asmussen S (2008) Crystallization of sodium sulfate phases in porous materials: the phase diagram Na2SO4–H2O and the generation of stress. Geochim Cosmochim Acta 72:4291–4306. doi:10.1016/j.gca.2008.05.053

    Article  Google Scholar 

  • Török Á (2008) Black crusts on travertine: factors controlling development and stability. Environ Geol 56:583–594. doi:10.1007/s00254-008-1297-x

    Article  Google Scholar 

  • Tsui N, Flatt RJ, Scherer GW (2003) Crystallization damage by sodium sulphate. J Cult Herit 4:109–115. doi:10.1016/S1296-2074(03)00022-0

    Article  Google Scholar 

  • Van TT, Beck K, Al-Mukhtar M (2007) Accelerated weathering tests on two highly porous limestones. Environ Geol 52:283–292. doi:10.1007/s00254-006-0532-6

    Article  Google Scholar 

  • Warke PA, Smith BJ (2007) Complex weathering effects on durability characteristics of building stone. In: Přikryl R, Smith BJ (eds) Building stone decay: from diagnosis to conservation, Special Publications 271, Geological Society of London, London, pp 211–224. doi: 10.1144/GSL.SP.2007.271.01.21

  • Wellman HW, Wilson AT (1965) Salt weathering, a neglected geological erosive agent in coastal and arid environments. Nature 205:1097–1098. doi:10.1038/2051097a0

    Article  Google Scholar 

  • Winkler EM, Singer PC (1972) Crystallization pressure of salts in stone and concrete. Geol Soc Am Bull 83:3509–3514. doi:10.1130/0016-7606(1972)83[3509:CPOSIS]2.0.CO;2

    Article  Google Scholar 

  • Yu S, Oguchi CT (2010) Role of pore size distribution in salt uptake, damage, and predicting salt susceptibility of eight types of Japanese building stones. Eng Geol 115:226–236. doi:10.1016/j.enggeo.2009.05.007

    Article  Google Scholar 

  • Zezza F, Macrì F (1995) Marine aerosol and stone decay. Sci Total Environ 167:123–143. doi:10.1016/0048-9697(95)04575-L

    Article  Google Scholar 

Download references

Acknowledgments

This research was developed in the scope of the Project PORENET (POCTI/CTA/44940/2002) of the Portuguese Fundação para a Ciência e a Tecnologia. The research units involved receive support from the Pluriannual program of Fundação para a Ciência e a Tecnologia, funded by the European Union (FEDER) and the national budget of the Portuguese Republic. Acknowledgments are also due to Eng. Teresa Luís, Eng. Sónia Pereira and the Enterprise Mármores Galrão for the initial blocks for the specimen extraction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Alves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alves, C., Figueiredo, C., Maurício, A. et al. Limestones under salt decay tests: assessment of pore network-dependent durability predictors. Environ Earth Sci 63, 1511–1527 (2011). https://doi.org/10.1007/s12665-011-0915-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-011-0915-1

Keywords

Navigation