Skip to main content

Advertisement

Log in

Hydrogeochemical controls on shallow alluvial groundwater under agricultural land: case study in central Portugal

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

A hydrogeochemical study employing graphical, multivariate statistical, and modeling tools was conducted in an area of alluvial deposits in the Mondego river basin, to determine the factors and processes controlling the shallow groundwater chemistry. Groundwater was collected from 29 observation wells in six sampling campaigns, between March 2001 and September 2002. Samples were analyzed for basic physicochemical parameters, major ions and some minor ions. Hierarchical cluster analysis was applied to the data set, including both the spatial and temporal monitoring data and resulted in the definition of eight distinct water types. With the aid of hydrochemical (and physicochemical) scatter plots, it was possible to identify the main processes controlling the groundwater chemistry: (1) evapotranspiration and recharge; (2) calcium and magnesium carbonate and CO2 dissolution; (3) nitrate leaching from agriculture; (4) oxidation and reduction; and (5) cation exchange. These processes are frequently common to more than one water type but unique in combination and/or extent, in space and/or time. Geochemical modeling of the water types (using PHREEQC) allowed the validation and, to a certain extent, quantification of the processes that affect the shallow groundwater evolution. These tools can provide an essential support for the assessment of groundwater vulnerability to contamination and for the elaboration of groundwater resource management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Almeida AC, Soares AF, Cunha L, Marques JF (1990) Proémio ao estudo do baixo Mondego. Biblos LXVI:17–47 (in Portuguese)

    Google Scholar 

  • Almeida C, Mendonça JL, Jesus MR, Gomes AJ (2000) Sistemas aquíferos de Portugal Continental. Instituto da Água/Centro de Geologia da Universidade de Lisboa, Lisboa, 3 volumes (in Portuguese)

  • Andrade AIASS (2005) Hidrogeoquímica e caracterização da contaminação hídrica nos corpos aluvionares do Mondego entre Coimbra e Montemor-o-Velho [in Portuguese]. PhD Thesis, Universidade de Coimbra, Portugal, 365 pp (in Portuguese)

  • Andrade AIASS, Stigter TY (2009) Multi-method assessment of nitrate and pesticide contamination in shallow alluvial groundwater as a function of hydrogeological setting and land use. Agric Water Manag 96:1751–1765

    Article  Google Scholar 

  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. A.A. Balkema Publishers, Leiden, The Netherlands, p 649

    Book  Google Scholar 

  • Ayenew T, Fikre S, Wisotzky F, Demlie M, Wohnlich S (2009) Hierarchical cluster analysis of hydrochemical data as a tool for assessing the evolution and dynamics of groundwater across the Ethiopian rift. Int J Phys Sci 4:76–90

    Google Scholar 

  • Banks D, Frengstad B, Midtgard AK, Krog JR, Strand T (1998) The chemistry of Norwegian groudwaters: I The distribution of radon, major and minor elements in 1604 cristalline bedrock groundwaters. Sci Total Environ 222:71–91

    Article  Google Scholar 

  • Barbosa BP, Soares AF, Rocha RB, Manupella G, Henriques MH (1988) Carta Geológica de Portugal. Notícia explicativa da folha 19-A Cantanhede. Serviços Geológicos de Portugal, Lisboa, 46 pp. (in Portuguese)

  • Causapé J, Quiléz D, Aragüés R (2004) Assessment of irrigation and environmental quality at the hydrological basin level II. Salt and nitrate loads in irrigation return flows. Agric Water Manag 70:211–228

    Google Scholar 

  • CCRC (1988) Programa de desenvolvimento da região Centro, vol 1. Comissão de Coordenação da Região Centro. Minist. Plan. e Adm. do Território, Coimbra, 146 p (in Portuguese)

  • Clesceri LS, Greenberg AE, Eaton AD (1998) Standard methods for the examination of water and waste water. American Public Health Association, American Water Works Association, Water Environment Federation, 20th edn. United Book Press Inc., Washington, USA p. variate

    Google Scholar 

  • Cloutier V, Lefebvre R, Therrien R, Savard MM (2008) Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J Hydrol 353:294–313

    Google Scholar 

  • Cristo FP (1998) Águas subterrâneas no Baixo Mondego. In: Projecto Praxis XXI 2/2.1/CTA—156/94—O Baixo Mondego: organização, geossistemática e recursos naturais, Coimbra, Portugal, pp 105–123 (in Portuguese)

  • DGADR (2008) Aproveitamento Hidroagrícola do Baixo Mondego. Direcção-Geral de Agricultura e Desenvolvimento Rural. http://www.dgadr.pt/ar/a_hidroagricolas/exploracao/ahmond.htm. Accessed 1 Nov 2008 (in Portuguese)

  • Dreher T (2003) Comment on Güler C, Thyne GD, McCray JE, Turner AK (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. (Hydrogeol J 10:455–474). Hydrogeol J 11:605–606

    Google Scholar 

  • EEA (2003) Europe’s water: an indicator-based assessment. Topic Report 1/2003, European Environmental Agency, Copenhagen, Denmark, 97 pp. http://www.eea.europa.eu/publications/topic_report_2003_1. Accessed 26 Nov 2009

  • EEA (2005) Source apportionment of nitrogen and phosphorus inputs into the aquatic environment. EEA Report No 7/2005, European Environmental Agency, Copenhagen, Denmark, 48 pp. http://www.eea.europa.eu/publications/eea_report_2005_7. Accessed 26 Nov 2009

  • Everitt BS (1986) Cluster analysis (reprinted version), 2nd edn. Gower Publishing Company Ltd., Hampshire, England 136

    Google Scholar 

  • Fisher RS, Mullican WF (1997) Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the Northern Chihuahuan Desert, Trans-Pecos, Texas, USA. Hydrogeol J 5:4–16

    Article  Google Scholar 

  • Goulding K (2000) Nitrate leaching from arable and horticulture land. Soil Use Manag 16:145–151

    Article  Google Scholar 

  • Güler C, Thyne GD (2003) Reply to comment by T. Dreher to Güler C, Thyne GD, McCray JE, Turner AK (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. (Hydrogeol J 10:455–474). Hydrogeol J 11:607–608

  • Güler C, Thyne G (2004) Hydrologic and geologic factors controlling surface and groundwater chemistry in Indian Wells–Owens Valley area, southeastern California, USA. J Hydrol 285:177–198

    Article  Google Scholar 

  • Güler C, Thyne GD, McCray JE, Turner AK (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol J 10:455–474

    Article  Google Scholar 

  • Hazen A (1911) Discussion: dams on sand foundations. Trans Am Soc Civil Eng 73:199

    Google Scholar 

  • Helstrup H, Jørgensen NO, Banoeng-Yakubo B (2007) Investigation of hydrochemical characteristics of groundwater from the Cretaceous–Eocene limestone aquifer in southern Ghana and southern Togo using hierarchical cluster analysis. Hydrogeol J 15:977–989

    Article  Google Scholar 

  • Hvorslev MJ (1951) Time lag and soil permeability in ground water observations. U.S. Army Corps of Engineers, Engineer Research and Development Center, Waterways Experimental Station, Vicksburg, Miss. Bulletin 36

    Google Scholar 

  • Ibrakhimov M, Khamzina A, Forkutsa I, Paluasheva G, Lamers JPA, Tischbein B, Vlek PLG, Martius C (2007) Groundwater table and salinity: spatial and temporal distribution and influence on soil salinization in Khorezm region (Uzbekistan, Aral Sea Basin). Irrig Drain Syst 21:219–236

    Article  Google Scholar 

  • Jalali M (2007) Assessment of the chemical components of Famenin groundwater, western Iran. Environ Geochem Health 29:357–374

    Article  Google Scholar 

  • Kim JH, Kim RH, Lee J, Chang HW (2003) Hydrogeochemical characterization of major factors affecting the quality of shallow groundwater in the coastal area at Kimje in South Korea. Environ Geol 44:478–489

    Article  Google Scholar 

  • Kumar M, Ramanathan Al, Keshari AK (2009) Understanding the extent of interactions between groundwater and surface water through major ion chemistry and multivariate statistical techniques. Hydrol Process 23:297–310

    Article  Google Scholar 

  • Lorite-Herrera M, Jimenez-Espinosa R (2008) Impact of agricultural activity and geologic controls on groundwater quality of the alluvial aquifer of the Guadalquivir River (province of Jaén, Spain): a case study. Environ Geol 54:1391–1402

    Article  Google Scholar 

  • Martinez DE, Bocanegra EM (2002) Hydrogeochemistry and cation-exchange processes in the coastal aquifer of Mar Del Plata, Argentina. Hydrogeol J 10:393–408

    Article  Google Scholar 

  • O’Shea B, Jankowski J (2006) Detecting subtle hydrochemical anomalies with multivariate statistics: an example from ‘homogeneuos’ groundwaters in the Great Artesian Basin, Australia. Hydrol Process 20:4317–4333

    Article  Google Scholar 

  • Oliveira JT, Pereira E, Ramalho M, Antunes MT, Monteiro JH (coord.) (1992) Carta Geológica de Portugal na escala 1:500 000, 5ª edição, 2 folhas. Serviços Geológicos de Portugal. Lisboa

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2.0)—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, vol. Water-Resources Investigations Report 99-4259. US Geological Survey, Denver, Colorado, USA, 312 p

  • Postma D, Boesen C, Kristiansen H, Larsen F (1991) Nitrate reduction in an unconfined sandy aquifer: water chemistry, reduction processes, and geochemical modeling. Water Resour Res 27:2027–2045

    Article  Google Scholar 

  • Rajmohan N, Elango L (2004) Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar river basins, southern India. Environ Geol 46:47–61

    Google Scholar 

  • Ramos C, Agut A, Lidón AL (2002) Nitrate leaching in important crops of the Valencian Community region (Spain). Environ Pollut 118:215–223

    Article  Google Scholar 

  • Rebelo F, Cunha L, Almeida AC (1990) Contribuição da geografia física para a inventariação das potencialidades turísticas do Baixo Mondego. Cadernos Geogr 9:3–34 (in Portuguese)

    Google Scholar 

  • Scheytt T (1997) Seasonal variations in groundwater chemistry near Lake Belau, Schleswig-Holstein, Northern Germany. Hydrogeol J 5:86–95

    Article  Google Scholar 

  • Soares AF, Marques JF, Rocha RB (1985) Contribuição para o conhecimento geológico de Coimbra. Memórias e Notícias, Publ. Mus. Lab. Mineral. Geol., Univ. Coimbra 100:41–71 (in Portuguese)

  • Spalding RF, Exner ME (1993) Occurrence of nitrate in groundwater—a review. J Environ Qual 22:392–402

    Article  Google Scholar 

  • Spalding RF, Watts DG, Schepers JS, Burbach ME, Exner ME, Poreda RJ, Martin GE (2001) Controlling nitrate leaching in irrigated agriculture. J Environ Qual 30:1184–1194

    Article  Google Scholar 

  • SPSS for Windows, Rel. 16.0.1.2007. SPSS Inc., Chicago

  • Stigter TY, van Ooijen SPJ, Post VEA, Appelo CAJ, Carvalho Dill AMM (1998) A hydrogeological and hydrochemical explanation of the groundwater composition under irrigated land in a Mediterranean environment, Algarve, Portugal. J Hydrol 208:262–279

    Article  Google Scholar 

  • Stigter TY, Carvalho Dill AMM, Ribeiro L, Reis E (2006a) Impact of the shift from groundwater to surface water irrigation on aquifer dynamics and hydrochemistry in a semi-arid region in the south of Portugal. Agric Water Manag 85:121–132

    Article  Google Scholar 

  • Stigter TY, Ribeiro L, Carvalho Dill AMM (2006b) Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater salinisation and nitrate contamination levels in two agricultural regions in the south of Portugal. Hydrogeol J 14:79–99

    Article  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry, 3rd edn. Wiley, New York, USA, p 1022

    Google Scholar 

  • Swan ARH, Sandilands M (1995) Introduction to geological data analysis. Blackwell Science Ltd., Oxford, England, p 446

    Google Scholar 

  • Swanson SK, Bahr JM, Schwar MT, Potter KW (2001) Two-way cluster analysis of geochemical data to constrain spring source waters. Chem Geol 179:73–91

    Article  Google Scholar 

  • Takai Y, Kamura T (1966) The mechanism of reduction in waterlogged paddy soil. Folia Microbiol 11:304–313

    Article  Google Scholar 

  • Thayalakumaran T, Bristow KL, Charlesworth PB, Fass T (2008) Geochemical conditions in groundwater systems: implications for the attenuation of agricultural nitrate. Agric Water Manag 95:103–115

    Article  Google Scholar 

  • Zhu GF, Su YH, Feng Q (2008) The hydrochemical characteristics and evolution of groundwater and surface water in the Heihe River Basin, northwest China. Hydrogeol J 16:167–182

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their thanks to the Departamento de Ciências da Terra, Instituto de Investigação da Água and Centro de Geociências da Universidade de Coimbra for the support during the progress of this study, to the farmers who allowed the installation of the observation wells on their lands, to the Escola Superior Agrária de Coimbra for the availability of the equipment for well installation, to Eng. Filipe Melo and Sr. José Borralho for the help during the installation of the wells and for many agricultural informations and finally to the Associação de Beneficiários da Obra de Fomento Hidroagrícola do Baixo Mondego and Direcção-Geral de Agricultura e Desenvolvimento Rural—Projecto Mondego for all the support in the field work and information data. The second author holds a post-doctoral research position under the Ciencia 2007 program financed by the FCT—Fundação para a Ciência e a Tecnologia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. A. S. S. Andrade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrade, A.I.A.S.S., Stigter, T.Y. Hydrogeochemical controls on shallow alluvial groundwater under agricultural land: case study in central Portugal. Environ Earth Sci 63, 809–825 (2011). https://doi.org/10.1007/s12665-010-0752-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-010-0752-7

Keywords

Navigation