Skip to main content
Log in

Hydrochemistry and origins of mineralized waters in the Puebla aquifer system, Mexico

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Significant upward movement of mineralized water takes place in the Puebla aquifer system. Preferential groundwater flow paths related to the geological structure and the lowering of the potentiometric surface are suspected to be the prime factors for this intrusion. A combined approach of geochemical and isotope analyses was used to assess the sources of salinity and processes that are controlling the changes in groundwater chemical composition in the Puebla aquifer. Geochemical and isotope data indicate that the likely source of increased solutes is mineralized water from the dissolution of evaporites of the Cretaceous age at the base of the Upper deep aquifer, which is deeper than the intakes of the shallow wells. Dedolomitization and cation exchange seems also to occur along flow paths where sulphate concentrations tend to increase. The deep regional flow paths controls the chemical stratification of groundwater in response to decreased heads through interconnecting vertical and horizontal pathways, such as in the Fosa Atlixco. The results also suggest that high sulphate concentrations originating in the Lower deep aquifer are currently affecting shallow production wells. It is concluded that hydrodynamic aspects together with hydrogeochemical characteristics need to be taken into account to correctly explain the hydrochemical evolution in the stratified aquifer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • André L, Franceschi M, Pouchan P, Atteia O (2005) Using geochemical data and modelling to enhance the understanding of groundwater flow in a regional deep aquifer, Aquitaine Basin, south-west of France. J Hydrol 305:40–62

    Article  Google Scholar 

  • Arroyo N (2005) Análisis del origen de la contaminación por azufre del sistema acuífero del valle de Puebla mediante análisis isotópicos (Analysis and origin of the contamination for sulfur of the aquifer system of the Puebla Valley using isotope analysis). Tesis de Maestría, Universidad Autónoma del Estado de México, 130 p

  • Busby JF, Lee RW, Hanshaw BB (1983) Major geochemical processes related to the hydrology of the Madison aquifer system and associated rocks in parts of Montana, South Dakota, and Wyoming. US Geol Surv Water Resour Invest Rep 83-4093, 180 p

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, New York, p 328

    Google Scholar 

  • Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I (1980) The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem Geol 27:199–260

    Article  Google Scholar 

  • Cortecci G, Dinelli E, Bolognesi L, Boschetti T, Ferrara G (2001) Chemical and isotopic composition of water and dissolved sulfate from shallow wells on Vulcano Island, Aeolian Archipelago, Italy. Geothermics 30:69–91

    Article  Google Scholar 

  • Cortés A, Farvolden RN (1989) Isotopic studies of precipitation and groundwater in the Sierra de las Cruces, Mexico. J Hydrol 107:147–153

    Article  Google Scholar 

  • Edmunds WM, Carrillo-Rivera JJ, Cardona A (2002) Geochemical evolution of groundwater beneath Mexico City. J Hydrol 258:1–24

    Article  Google Scholar 

  • EXXICO SA (1990) Estudio de actualización geohidrológica del acuífero del valle de Puebla para abastecimiento de agua a la Ciudad de Puebla (Revised geohydrological study of the Valle de Puebla aquifer carried out to provide fresh water to the city of Puebla). CNA-SARH, Mexico City

    Google Scholar 

  • Flores-Márquez EL, Jiménez-Juárez G, Martínez-Serrano RG, Chávez RE, Silva-Pérez D (2006) Study of geothermal water intrusión due to groundwater exploitation in the Puebla Valley aquifer system, Mexico. Hydrogeol J 14:1216–1230

    Article  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall Canada Inc., Toronto, p 552

    Google Scholar 

  • Fritz P, Basharmal GM, Drimmie RJ, Ibsen J, Qureshi RM (1989) Oxygen isotope exchange between sulfate and water during bacterial reduction of sulphate. Chem Geol 79:99–105

    Google Scholar 

  • Geotecnología SA (1997) Actualización del estudio geohidrológico de los acuíferos del Valle de Puebla, Puebla. (Revised geohydrological study of the Valle de Puebla aquifer system, Puebla). Sistema Operador de Agua Potable y Alcantarillado de Puebla (SOAPAP), Puebla

    Google Scholar 

  • Gonfiantini R, Frohlich K, Araguás-Araguás L, Rozanski K (1998) Isotopes in groundwater hydrology. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 203–246

    Google Scholar 

  • González AA (2002) Análisis del Comportamiento Isotópico del Acuífero de la Cuenca del Alto Lerma, en la Región del Valle de Toluca (Analysis of isotopic behaviour in the upper lerma basin in the Toluca Valley Region). Master’s Thesis, Facultad de Ingeniería (CIRA), Universidad Autónoma del Estado de México

  • Gu A (2005) Stable isotope geochemistry of sulfate in groundwater of southern Arizona: implications for groundwater flow, sulfate sources, and environmental significance. PhD Thesis, Department of Geosciences, University of Arizona, p 256

  • Hair JF, Anderson RE, Tatham RL, Black WC (1998) Multivariate data analysis, 5th edn. Prentice Hall, Englewood Cliffs, p 75

    Google Scholar 

  • Hancox J (2005) Aspects of aquifer vulnerability in volcanic terrain: south-eastern Toluca Basin, Mexico. MSc thesis, University of Waterloo, p 210

  • Jensen ML, Nakai N (1961) Sources and isotopic composition of atmospheric sulfur. Science 134:2102–2104

    Article  Google Scholar 

  • López-Chicano M, Bouamama M, Vallejos A, Pulido-Bosch A (2001) Factors which determine the hydrogeochemical behaviour of karstic springs. A case study from the Betic Cordilleras, Spain. Appl Geochem 16:1179–1192

    Article  Google Scholar 

  • Mooser F (1972) The Mexican volcanic belt: structure and tectonics. Geofis Int 12:55–70

    Google Scholar 

  • Mooser F, Montiel A, Zúñiga A (1996) Nuevo Mapa Geológico de las Cuencas de México, Toluca y Puebla (New geological map of the Mexico, Toluca and Puebla basins). Comisión Federal de Electricidad (CFE), Mexico City

    Google Scholar 

  • Morán-Zenteno DJ (1984) Geología de la República Mexicana (Geology of the Mexican Republic). Instituto de Estadística Geografía e Informática (INEGI) y la Universidad Nacional Autónoma de México (UNAM), Mexico City

    Google Scholar 

  • Nelson SA, Sanchez-Rubio G (1986) Trans Mexican volcanic belt field guide. Volcanology Division, Geological Association of Canada

  • Östlund G (1959) Isotopic composition of sulfur in precipitation and sea-water. Tellus 11:478–480

    Article  Google Scholar 

  • Papatheodorou G, Lambrakis N, Panagopoulos G (2007) Application of multivariate statistical procedures to the hydrochemical study of a coastal aquifer: an example from Crete, Greece. Hydrol Process 21:1482–1495

    Article  Google Scholar 

  • Plummer LN, Busby JF, Lee RW, Hanshaw BB (1990) Geochemical modeling of the Madison aquifer in parts of Montana, Wyoming, and South Dakota. Water Resour Res 26(9):1981–2014

    Google Scholar 

  • Rudolph DL, Sultan R, Gárfias J, McLaren R (2006) Significance of enhanced infiltration due to groundwater extraction on the disappearance of a headwater lagoon system: Toluca Basin, Mexico. Hydrogeol J 14(1–2):115–130

    Article  Google Scholar 

  • Sacks LA, Herman JS, Kauffman SJ (1995) Controls on high sulfate concentrations in the Upper Floridan aquifer in southwest Florida. Water Resour Res 31(10):2541–2551

    Article  Google Scholar 

  • Sultan R (2001) Impacts on wetland hydrology from extensive groundwater extraction: Lerma River Basin, Mexico. MSc Thesis, University of Waterloo, p 225

  • Van Stempvoort DR, Krouse HR (1994) Control of δ18O in sulfate: review of experimental data application to specific environments. In: Alpers CA, Blowes DW (eds) Environmental geochemistry of sulfide oxidation, American chemical society. A.C.S. Symp 550, Washington, pp 446–480

    Google Scholar 

  • Vázquez-Sánchez E, Cortés A, Jaimes Palomera R, Fritz P, Aravena R (1989) Hidrología Isotópica de los Valles de Cuautla y Yautepec, México (Isotopic hydrology of the Cuautla and Yautepec Valleys). Geofisica Internacional 28–2:245–264

    Google Scholar 

Download references

Acknowledgments

The authors would like to express appreciation to CONAGUA and SOAPAP for their support and field assistance through various stages of this research project. The authors are also grateful to students and technicians at CIRA (UAEM) for assisting with collection of field samples. Funding was provided for the project through the National Sciences and Engineering Research Council (NSERC) and the Autonomous University of the State of Mexico (UAEM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Gárfias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gárfias, J., Arroyo, N. & Aravena, R. Hydrochemistry and origins of mineralized waters in the Puebla aquifer system, Mexico. Environ Earth Sci 59, 1789–1805 (2010). https://doi.org/10.1007/s12665-009-0161-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-009-0161-y

Keywords

Navigation