Skip to main content
Log in

A survey on visualization of tensor field

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

Tensor field has been widely used in various applications, such as medical imaging, industrial manufacturing, high-dimensional data analysis, and so forth. However, it is a challenging task to understand tensor field intuitively. Therefore, tensor field visualization has become an important research topic. In this survey, we present a comprehensive survey for two kinds of visualization methods for tensor fields: glyphs and streamlines. For glyphs, the eigenvalues of tensor fields will be used to classify existing visualization methods. There are mainly three types of eigenvalues: diffusion tensor fields with all positive real eigenvalues; the tensor field with negative real eigenvalues; the tensor field with imaginary eigenvalues. The methods showing the difference between two tensors (glyphs) are also introduced. For streamlines, there are mainly three important issues: the selection of seed points (streamlines), interpolation of tensor fields, the singularity problem around isotropic tensors. Finally, we discuss challenges and open questions for future studies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Abbasloo A, Wiens V, Hermann M, Schultz T (2016) Visualizing tensor normal distributions at multiple levels of detail. IEEE Trans Vis Comput Graph 22:975–984

    Article  Google Scholar 

  • Alexander AL, Kindlmann GL, Parker DL, Tsurada JS (2000) A geometric analysis of diffusion tensor measurements of the human brain. IMagn Reson Med 44:283–291

    Article  Google Scholar 

  • Ankele M, Schultz T (2019) DT-MRI streamsurfaces revisited. IEEE Trans Vis Comput Graph 25(1):1112–1121

    Article  Google Scholar 

  • Arsigny V, Fillard P, Pennec X, Ayache N (2006) Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn Reson Med 56(2):411–421

    Article  Google Scholar 

  • Assaf Y, Ben-Bashat D, Chapman J, Peled S, Biton I, Kafri M, Segev Y, Hendler T, Korczyn A, Gralf M, Cohen Y (2002) High b-value q-space analyzed diffusion-weighted MRI: application to multiple sclerosis. Magn Reson Med 47(1):115–126

    Article  Google Scholar 

  • Auer C, Hotz I (2011) Complete tensor field topology on 2D triangulated manifolds embedded in 3D. Comput Graph Forum 30(3):831–840

    Article  Google Scholar 

  • Barrick TR, Clark CA (2004) Singularities in diffusion tensor fields and their relevance in white matter fiber tractography. Neuro Image 22(2):481–491

    Google Scholar 

  • Bashat D, Sira L, Gralf M, Planka P, Hendler T, Cohen Y, Assaf Y (2005) Normal white matter development from infancy to adulthood: comparing diffusion tensor and high b value diffusion weighted MR images. J Magn Reson Imaging 21(5):503–511

    Article  Google Scholar 

  • Basser PJ (1995) Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 8(7):333–344

    Article  Google Scholar 

  • Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44(4):625–632

    Article  Google Scholar 

  • Batchelor PG, Moakher M, Atkinson D, Calamante F, Connelly A (2005) A rigorous framework for diffusion tensor calculus. Magn Reson Med 53(1):221–225

    Article  Google Scholar 

  • Belhumeur PN, Kriegman DJ, Yuille AL (1999) The bas-relief ambiguity. Int J Comput Vis 35(1):33–44

    Article  Google Scholar 

  • Bergmann Ø, Kindlmann G, Lundervold A, Westin C (2006) Diffusion k-tensor estimation from Q-ball imaging using discretized principal axes. In: Proceedings of medical image computing and computer-assisted intervention, pp 268–275

  • Bergmann Ø, Kindlmann GL, Peled S, Westin C (2007) Two-tensor fiber tractography. In: Proceedings of the 4th IEEE international symposium on biomedical imaging, pp 796–799

  • Bi C (2012) Degeneracy-aware interpolation of diffusion tensor fields and its applications. Ph.D. thesis

  • Bi C, Takahashi S, Fujishiro I (2010) Interpolating 3D diffusion tensors in 2D planar do- main by locating degenerate lines. In: Proceedings of the 6th international conference on advances in visual computing, springer lecture notes in computer science, vol 6453, pp 328–337

  • Bi C, Takahashi S, Ishida H, Fujishiro I (2010) Interpolating 3D diffusion tensors through optimizing rotational transfomations of anisotropic features. In: Poster proceedings of IEEE pacific visualization 2010. IEEE Computer Society, pp 3–4

  • Bi C, Takahashi S, Fujishiro I (2011) Interpolation of 3D diffusion tensor fields by locating degenerate lines. In: Poster proceedings of IEEE pacific visualization 2011. IEEE Computer Society, pp 9–10

  • Bi C, Sakurai D, Takahashi S, Ono K (2012) Interactive control of mesh topology in quadrilateral mesh generation based on 2D tensor fields. In: Proceedings of the 8th international conference on advances in visual computing, springer lecture notes in computer science, vol 7432, pp 726–735

  • Bi C, Takahashi S, Fujishiro I (2012) Degeneracy-aware interpolation of 3D diffusion tensor fields. In: SPIE visualization and data analysis 2012, vol 8294, pp 1–8

  • Bi C, Yuan Y, Zhang R, Xiang Y, Wang Y, Zhang J (2017) A dynamic mode decom- position based edge detection method for art images. IEEE Photon J 9(6):1–13

    Article  Google Scholar 

  • Bi C, Yuan Y, Zhang J, Shi Y, Xiang Y, Wang Y, Zhang R (2018) Dynamic mode decomposition based video shot detection. IEEE Access 6:21397–21407

    Article  Google Scholar 

  • Bi C, Fu B, Chen J, Zhao Y, Yang L, Duan Y, Shi Y (2019) Machine learning based fast multi-layer liquefaction disaster assessment. World Wide Web: internet and web information systems. pp 1–16. https://doi.org/10.1007/s11280-018-0632-8

  • Burgkart R, Westermann R, Georgii J, Dick C (2009) Stress tensor field visualization for implant planning in orthopedics. IEEE Trans Vis Comput Graph 15(6):1399–1406

    Article  Google Scholar 

  • Chefd’hotel C, Tschumperlé D, Deriche R, Faugeras O (2004) Regularizing flows for constrained matrix-valued images. J Math Imaging Vis 20(1–2):147–162

    Article  MathSciNet  MATH  Google Scholar 

  • Chen Y, Cohen J, Krolik J (2007) Similarity-guided streamline placement with error evaluation. IEEE Trans Vis Comput Graph 13(6):1448–1455

    Article  Google Scholar 

  • De Leeuw WC, Van Wijk JJ (1993)A probe for local flow field visualization. In: Proceedings of the 4th conference on visualization, pp 39–45

  • Ebert D, Rheingans P (2000) Volume illustration: non-photorealistic rendering of volume data. In: Proceedings of IEEE visualization 2000, pp 195–202

  • Ebert D, Shaw C (2001) Minimally immersive flow visualization. IEEE Trans Vis Comput Graph 7(4):343–350

    Article  Google Scholar 

  • Engelke W, Lawonn K, Preim B, Hotz I (2019) Autonomous particles for interactive flow visualization. Comput Graph Forum 0(0), 1–12

  • Ennis D, Kindlmann G, Heim P, Rodriguez I, Wen H, McVeigh E (2004) Visualization of high-resolution myocardial strain and diffusion tensors using superquadric glyphs. In: Proceedings of the 12th annual meeting of international society for magnetic resonance in medicine (ISMRM), p. 1

  • Feng L, Hotz I, Hamann B, Joy K (2008) Anisotropic noise samples. IEEE Trans Vis Comput Graph 14(2):342–354

    Article  Google Scholar 

  • Fillard P, Arsigny V, Pennec X, Ayache N (2006) Clinical DT-MRI estimation, smooth- ing and fiber tracking with Log-Euclidean metrics. In: Proceedings of the 3rd IEEE international symposium on biomedical imaging, pp. 786–789

  • Fletcher PT, Joshi SC (2004) Principal geodesic analysis on symmetric spaces: statistics of diffusion tensors. In: Proceedings of computer vision and mathematical methods in medical and biomedical image analysis, springer lecture notes in computer science, vol 3117, pp 87–98

  • Fletcher PT, Joshi S (2007) Riemannian geometry for the statistical analysis of diffusion tensor data. Sig Process 87(2):250–262

    Article  MATH  Google Scholar 

  • Fu F, Abukhdeir N (2015) A topologically-informed hyperstreamline seeding method for alignment tensor fields. IEEE Trans Vis Comput Graph 21(3):413–419

    Article  Google Scholar 

  • Fujishiro I, Chen L, Takeshima Y, Nakamura H, Suzuki Y (2002) Parallel visualization of gigabyte datasets in GeoFEM. Concurr Comput Pract Exp 14(6–7):521–530

    Article  MATH  Google Scholar 

  • Gerrits T, Rssl C, Theisel H (2017) Glyphs for general second-order 2D and 3D tensors. IEEE Trans Vis Comput Graph 23(1):980–989

    Article  Google Scholar 

  • Gleicher M, Albers D, Walker R, Jusrfi I, Hansen C, Roberts J (2011) Visual comparison for information visualization. Inf Vis 10(4):289–309

    Article  Google Scholar 

  • Golub GH, Loan CFV (eds) (1996) Matrix computations. Johns Hopkins University Press, Maryland

    MATH  Google Scholar 

  • Haber R (1990) Visualization techniques for engineering mechanics. Comput Syst Eng 1(1):37–50

    Article  Google Scholar 

  • Hagen H, Hahmann S, Schreiber T, Nakajima Y, Wordenweber B, Hollemann- Grundstedt P (1992) Surface interrogation algorithms. IEEE Comput Graph Appl 12(5):53–60

    Article  Google Scholar 

  • Hasan K, Parker D, Alexander A (2001) Comparison of gradient encoding schemes for diffusion-tensor MRI. J Magn Reson Imaging 13(5):769–780

    Article  Google Scholar 

  • Hashash Y, Yao J, Wotring D (2003) Glyph and hyperstreamline representation of stress and strain tensors and material constitutive response. Int J Numer Anal Methods Geomech 27:603–626

    Article  MATH  Google Scholar 

  • Hesselink L, Levy Y, Lavin Y (1997) The topology of symmetric, second-order 3D tensor fields. IEEE Trans Vis Comput Graph 3(1):1–11

    Article  Google Scholar 

  • Hotz I, Feng L, Hagen H, Hamann B, Joy KI, Jeremic B (2004) Physically based methods for tensor field visualization. IEEE Vis 2004:123–130

    Google Scholar 

  • Hotz I, Feng L, Hagen H, Hamann B, Joy K (2006) Tensor field visualization using a metric interpretation. In: Visualization and processing of tensor fields, pp 269–280

  • Hotz I, Sreevalsan-Nair J, Hamann B (2010) Tensor field reconstruction based on eigen- vector and eigenvalue interpolation. In: Scientific visualization: advanced concepts, pp 110–123

  • Hsu E (2001) Generalized line integral convolution rendering of diffusion tensor fields. In: Proceedings of international society of magnetic resonance in medicine (ISMRM), p 790

  • Ikits M, Brederson JD, Hansen CD, Johnson CR (2003) A constraint-based technique for haptic volume exploration. IEEE Vis 2003:263–269

    Google Scholar 

  • Ito S, Okuda H: HPC-MW (2007) A problem solving environment for developing parallel FEM applications. In: Proceedings of the 8th international conference on applied parallel computing: state of the art in scientific computing, springer lecture notes in computer science, vol 4699, pp 694–702

  • Jeremic B, Scheuermann G, Frey J, Yang Z, Hamann B, Joy K, Hagen H (2002) Tensor visualizations in computational geomechanics. Int J Numer Anal Methods Geomech 26(10), 925–944

  • Jobard B, Lefer W (1997) Creating evenly-spaced streamlines of arbitrary density. In: Visualization in scientific computing, pp 43–56

  • Jones D (2004) The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a monte carlo study. Magn Reson Med 51(4):807–815

    Article  Google Scholar 

  • Jones D, Griffin L, Alexander D, Catani M, Horsfield M, Howard R, Williams S (2002) Spatial normalization and averaging of diffusion tensor MRI data sets. Neuroimage 17(2):592–617

    Article  Google Scholar 

  • Kindlmann GL (2004) Superquadric tensor glyphs. In: Proceedings of IEEE TCVG symposium on visualization 2004, pp 147–154

  • Kindlmann GL (2004) Visualization and analysis of diffusion tensor fields. Ph.D. thesis

  • Kindlmann GL, Weinstein DM (1999) Hue-balls and lit-tensors for direct volume rendering of diffusion tensor fields. IEEE Visualization 1999:183–189

    Article  Google Scholar 

  • Kindlmann GL, Westin C (2006) Diffusion tensor visualization with glyph packing. IEEE Trans Vis Comput Graph 12(5):1329–1336

    Article  Google Scholar 

  • Kindlmann GL, Weinstein D, Hart D (2000) Strategies for direct volume rendering of diffusion tensor fields. IEEE Trans Vis Comput Graph 6(2):124–138

    Article  Google Scholar 

  • Kindlmann GL, Tricoche X, Westin C (2006) Anisotropy creases delineate white matter structure in diffusion tensor MRI. In: Proceedings of 9th international conference on medical image computing and computer-assisted intervention, springer lecture notes in computer science, vol 4190, pp 126–133

  • Kindlmann GL, Estepar RSJ, Niethammer M, Haker S, Westin CF (2007) Geodesic-Loxodromes for diffusion tensor interpolation and difference measurement. In: Proceedings of medical image computing and computer-assisted intervention, springer lecture notes in computer science, vol 4791, pp 1–9

  • Kindlmann GL, Tricoche X, Westin C (2007b) Delineating white matter structure in diffusion tensor MRI with anisotropy creases. Med Image Anal 11(5):492–502

    Article  Google Scholar 

  • Kirby R, Marmanis H, Laidlaw D (1999) Visualizing multivalued data from 2D incompressible flows using concepts from painting. In: Proceedings of IEEE visualization, pp 333–340

  • Kratz A, Meyer B, Hotz I (2011) A Visual approach to analysis of stress tensor fields. Sci Vis Interact Featur Metaphors Dagstuhl Follow-Ups 2:188–211

    Google Scholar 

  • Kratz A, Auer C, Stommel M, Hotz I (2013) Visualization and analysis of second-order tensors: moving beyond the symmetric positive-definite case. Comput Graph Forum 32(1):49–74

    Article  Google Scholar 

  • Kratz A, Schöneich M, Zobel V, Burgeth B, Scheuermann G, Hotz I, Stommel M (2014) Tensor visualization driven mechanical component design. Proc IEEE Pac Vis Symp 2014:145–152

    Google Scholar 

  • Kubicki M, Park H, Westin C, Nestor P, Mulkern R, Maier S, Niznikiewicz M, Connor E, Levitt J, Frumin M (2005) DTI and MTR abnormalities in schizophrenia: analysis of white matter integrity. Neuroimage 26(4):1109–1118

    Article  Google Scholar 

  • Lei N, Zheng X, Jiang J, Lin YY, Gu DX (2017) Quadrilateral and hexahedral mesh generation based on surface foliation theory. Comput Methods Appl Mech Eng 316:758–781

    Article  MathSciNet  Google Scholar 

  • Lenglet C, Rousson M, Deriche R, Faugeras O (2006) Statistics on the manifold of multivariate normal distributions: theory and application to diffusion tensor MRI processing. J Math Imaging Vis 25(3):423–444

    Article  MathSciNet  Google Scholar 

  • Max N, Crawfis R, Grant C (1994) Visualizing 3D velocity fields near contour surfaces. In: Proceedings of IEEE visualization, pp 248–255

  • McGraw T, Vemuri BC, Chen Y, Rao M, Mareci T (2004) DT-MRI denoising and neuronal fiber tracking. Med Image Anal 8(2):95–111

    Article  Google Scholar 

  • McGraw T, Vemuri BC, Ozarslan E, Chen Y, Mareci T (2009) Variational denoising of diffusion-weighted MRI. Inverse Probl Imaging 3(4):625–648

    Article  MathSciNet  MATH  Google Scholar 

  • McGraw T, Kawai T, Yassine I, Zhu L (2011) Visualizing high-order symmetric tensor field structure with differential operators. J Appl Math 2011:1–27

    Article  MathSciNet  MATH  Google Scholar 

  • Mebarki A, Alliez P, Devillers O (2005) Farthest point seeding for efficient placement of streamlines. In: Proceedings of IEEE visualization, pp 479–486

  • Merino-Caviedes S, Martin-Fernandez M (2008) A general interpolation method for symmetric second-rank tensors in two dimensions. In: Proceedings of the 5th IEEE international symposium on biomedical imaging, pp 931–934

  • Meuschke M, Voß S, Beuing O, Preim B, Lawonn K (2017) Glyph-based comparative stress tensor visualization in cerebral aneurysms. Comput Graph Forum 36(3):99–108

    Article  Google Scholar 

  • Mishra A, Lu Y, Meng J, Anderson AW, Ding Z (2006) Unified framework for anisotropic interpolation and smoothing of diffusion tensor images. Neuro Image 31(4):1525–1535

    Google Scholar 

  • Moore JG, Schorn SA, Moore J (1995) Methods of classical mechanics applied to turbulence stresses in a tip leakage vortex. In: Proceedings of international gas turbine and aeroengine congress & exposition, pp 1–11

  • Mori S, Crain BJ, Chacko VP, Zijl PCV (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45(2):265–269

    Article  Google Scholar 

  • Muraki S, Fujishiro I, Suzuki Y, Takeshima Y (2006) Diffusion-based tractography: visualizing dense white matter connectivity from 3D tensor fields. Proc Vol Graph 2006:119–126

    Google Scholar 

  • Neeman A, Jeremic B, Pang A (2005) Visualizing tensor fields in geomechanics. In: Proceedings of IEEE visualization, pp 35–42

  • Obermaier H, Billen MI, Hagen H, Hering-Bertram M (2011) Interactive visualization of scattered moment tensor data. In: Proceedings of SPIE visualization and data analysis 2011, vol 7868, 78680I

  • Ogawa Y, Fujishiro I, Suzuki Y, Takeshima Y (2009) Designing 6DOF haptic transfer functions for effective exploration of 3D diffusion tensor fields. In: Proceedings of world haptics conference, pp 470–475

  • Oster T, Rössl C, Theisel H (2018) Core lines in 3d second-order tensor fields. Comput Graph Forum 37(3):327–337

    Article  Google Scholar 

  • Ozarslan E, Marecl T (2003) Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging. Magn Reson Med 50(5):955–965

    Article  Google Scholar 

  • Pajevic S, Aldroubi A, Basser PJ (2002) A continuous tensor field approximation of dis- crete DT-MRI data for extracting microstructural and architectural features of tissue. J Magn Reson 154(1):85–100

    Article  Google Scholar 

  • Palacios J, Yeh H, Wang W, Zhang Y, Laramee RS, Sharma R, Schultz T, Zhang E (2016) Feature surfaces in symmetric tensor fields based on eigenvalue manifold. IEEE Trans Vis Comput Graph 22(3):1248–1260

    Article  Google Scholar 

  • Palke D, Lin Z, Chen G, Yeh H, Vincent P, Laramee R, Zhang E (2011) Asym- metric tensor field visualization for surfaces. IEEE Trans Vis Comput Graph 17(12):1979–1988

    Article  Google Scholar 

  • Pasternak O, Sochen N, Basser PJ (2010) The effect of metric selection on the anal- ysis of diffusion tensor MRI data. NeuroImage 49(3):2190–2204

    Article  Google Scholar 

  • Peikert R, Sadlo F (2008) Height ridge computation and filtering for visualization. Proc IEEE Pac Vis Symp 2008:119–126

    MATH  Google Scholar 

  • Pierpaoli C, Basser PJ (2000) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36(6):893–906

    Article  Google Scholar 

  • Raith F, Blecha C, Nagel T, Parisio F, Kolditz O, Gunther F, Stommel M, Scheuermann G (2019) Tensor field visualization using fiber surfaces of invariant space. IEEE Trans Vis Comput Graph 25(1):1122–1131

    Article  Google Scholar 

  • Ren L, Zhang L, Wang L, Tao F, Chai X (2017) Cloud manufacturing: key characteristics and applications. Int J Comput Integr Manuf 30(6):501–515

    Article  Google Scholar 

  • Ren L, Cheng X, Wang X, Cui J, Zhang L (2019) Multi-scale dense gate recurrent unit networks for bearing remaining useful life prediction. Fut Gener Comput Syst 94:601–609. https://doi.org/10.1016/j.future.2018.12.009

    Article  Google Scholar 

  • Savadjiev P, Kindlmann GL, Bouix S, Shenton ME, Westin C (2009) Local white matter geometry indices from diffusion tensor gradients. In: Proceedings of medical image computing and computer-assisted intervention, springer lecture notes in computer science, vol 5761, pp 345–352

  • Schultz T (2011) Topological features in 2D symmetric higher-order tensor fields. Comput Graph Forum 30(3):841–850

    Article  Google Scholar 

  • Schultz T, Kindlmann GL (2010a) A maximum enhancing higher-order tensor glyph. Comput Graph Forum 29(3):1143–1152

    Article  Google Scholar 

  • Schultz T, Kindlmann GL (2010b) Superquadric glyphs for symmetric second-order tensors. IEEE Trans Vis Comput Graph 16(6):1595–1604

    Article  Google Scholar 

  • Schultz T, Seidel HP (2008) Estimating crossing fibers: a tensor decomposition approach. IEEE Trans Vis Comput Graph 14(6):1635–1642

    Article  Google Scholar 

  • Schultz T, Schlaffke L, Schölkopf B, Schmidt-Wilcke T (2013) HiFiVE: a Hilbert space embedding of fiber variability estimates for uncertainty modeling and visualization. Comput Graph Forum 32(3):121–130

    Article  Google Scholar 

  • Schultz T, Vilanova A (2018) Diffusion MRI visualization. NMR Biomed 0(0): e3902

  • Schultz T, Theisel H, Seidel HP (2007) Topological visualization of brain diffusion MRI data. IEEE Trans Vis Comput Graph 13(6):1496–1503

    Article  Google Scholar 

  • Schultz T, Theisel H, Seidel HP (2010) Crease surfaces: from theory to extraction and application to diffusion tensor MRI. IEEE Trans Vis Comput Graph 16(1):109–119

    Article  Google Scholar 

  • Seltzer N, Kindlmann G (2016) Glyphs for asymmetric second-order 2D tensors. In: Proceedings of IEEE VGTC conference on visualization, pp 141–150

  • Sepasian N, Ten Thije Boonkkamp J, Vilanova A (2015) Diffusion tensor imaging: brain pathway reconstruction. Nieuw Archief voor Wiskunde 5/16(4): 259–265

  • Sigfridsson A, Ebbers T, Heiberg E, Wigström L (2002) Tensor field visualization using adaptive filtering of noise fields combined with glyph rendering. In: Proceedings of IEEE visualization, pp 371–378

  • Slavin V, Pelcovits R, Loriot G, Callan-Jones A, Laidlaw D (2006) Techniques for the visualization of topological defect behavior in nematic liquid crystals. IEEE Trans Vis Comput Graph 12(5):1323–1328

    Article  Google Scholar 

  • Sreevalsan-Nair J, Auer C, Hamann B, Hotz I (2011) Eigenvector-based interpolation and segmentation of 2D tensor fields. In: Topological methods in data analysis and visualization, mathematics and visualization, pp 139–150

  • Theisei H, Weinkauf T, Hege H, Seidei H (2003) Saddle connectors? An approach to visualizing the topological skeleton of complex 3D vector fields. In: Proceedings of IEEE visualization, pp 325–232

  • Tricoche X, Kindlmann GL, Westin C (2008) Invariant crease lines for topological and structural analysis of tensor fields. IEEE Trans Vis Comput Graph 14(6):1627–1634

    Article  Google Scholar 

  • Turk G, Banks D (1996) Image-guided streamline placement. In: Proceedings of the 23rd annual conference on computer graphics and interactive techniques, pp 453–460

  • Verma V, Kao D, Pang A (2000) Flow-guided streamline seeding strategy. In: Proceedings of IEEE visualization, pp 163–170

  • Wang B, Hotz I (2017) Robustness for 2D symmetric tensor field topology. In: Proceedings of modeling, analysis, and visualization of anisotropy, pp 3–27

  • Weickert J, Welk M (2006) Tensor field interpolation with PDEs. In: Visualization and processing of tensor fields, mathematics and visualization, Springer, pp 315–325

  • Weiss K, Lindstrom P (2016) Adaptive multilinear tensor product wavelets. IEEE Trans Vis Comput Graph 22(1):985–994

    Article  Google Scholar 

  • Weisstein EW (2003) CRC Concise encyclopedia of mathematics. CRC Press, Boca Raton, p 1894

    MATH  Google Scholar 

  • Westin CF, Maler SE, Khidhir B, Everett P, Jolesz FA, Kikinis R (1999) Image processing for diffusion tensor magnetic resonance imaging. In: Proceedings of the 2nd conference on medical image computing and computer-assisted intervention (MICCAI), pp 441–452

  • Westin CF, Peled S, Gudbjartsson H, Kikinis R, Jolesz FA (1997) Geometrical diffusion measures for MRI from tensor basis analysis. In: Proceedings of international society for magnetic resonance in medicine, p 1742

  • Westin CF, Maier SE, Mamata H, Nabavi A, Jolesz FA, Kikinis R (2002) Processing and visualization for diffusion tensor MRI. Med Image Anal 6(2):93–108

    Article  Google Scholar 

  • Wu K, Liu Z, Zhang S, Moorhead R (2010) Topology-aware evenly spaced streamline placement. IEEE Trans Vis Comput Graph 16(5):791–801

    Article  Google Scholar 

  • Xu K, Gao X, Chen G (2018) Hexahedral mesh quality improvement via edge-angle optimization. Comput Graph 70:17–27

    Article  Google Scholar 

  • Yang L, Wang B, Zhang R, Zhou H, Wang R (2018) Analysis on location accuracy for the binocular stereo vision system. IEEE Photon J 10(1): 1–13

  • Yassine I, McGraw T (2009) 4th order diffusion tensor interpolation with divergence and curl constrained bézier patches. In: Proceedings of the 6th IEEE international symposium on biomedical imaging, pp 634–637

  • Yassine I, McGraw T (2008) A subdivision approach to tensor field interpolation. In: Proceedings of workshop on computational diffusion MRI, pp 117–124

  • Ye X, Kao D, Pang A (2005) Strategy for seeding 3D streamlines. In: Proceedings of IEEE visualization, pp 471–478

  • Yusoff YA, Mohamad F, Sunar MS, Selamat A (2016) Flow visualization techniques: a review. In: Proceedings of international conference on industrial, engineering and other applications of applied intelligent systems, pp 527–538

  • Zhang C, Caan MWA, Höllt T, Eisemann E, Vilanova A (2017) Overview + detail visualization for ensembles of diffusion tensors. Comput Graph Forum 36(3):121–132

    Article  Google Scholar 

  • Zhang E, Yeh H, Lin Z, Laramee R (2009) Asymmetric tensor analysis for flow visualization. IEEE Trans Vis Comput Graph 15(1):106–122

    Article  Google Scholar 

  • Zhang C, Schultz T, Lawonn K, Eisemann E, Vilanova A (2016) Glyph-based comparative visualization for diffusion tensor fields. IEEE Trans Vis Comput Graph 22(1):797–806

    Article  Google Scholar 

  • Zheng, X., Pang, A.: HyperLIC. In: IEEE Visualization 2003, pp. 249 - 256 (2003)

  • Zheng X, Pang A (2004) Topological lines in 3D tensor fields. IEEE Vis 2004:313–320

    Google Scholar 

  • Zheng X, Parlett B, Pang A (2005a) Topological structures of 3D tensor fields. IEEE Vis 2005:551–558

    Google Scholar 

  • Zheng X, Parlett BN, Pang A (2005b) Topological lines in 3D tensor fields and discriminant Hessian factorization. IEEE Trans Vis Comput Graph 11(4):395–407

    Article  Google Scholar 

  • Zobel V, Scheuermann G (2018) Extremal curves and surfaces in symmetric tensor fields. Vis Comput 34(10):1427–1442

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China under Grant Nos. 61702360, 61572057, 61836001, partly by the Tianjin Natural Science Foundation of China under Granted No. 16JCQNJC04100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongke Bi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, C., Yang, L., Duan, Y. et al. A survey on visualization of tensor field. J Vis 22, 641–660 (2019). https://doi.org/10.1007/s12650-019-00555-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-019-00555-8

Keywords

Navigation