Skip to main content
Log in

Innovative Reuse of Fly Ashes for Treatment of a Contaminated River Sediment: Synthesis of Layered Double Hydroxides (LDH) and Chemical Performance Assessments

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

This investigation presents a new valorization route of fly ash, based on the synthesis of layered double hydroxide (LDH) used as efficient and cost-effective adsorbent for the stabilization of contaminants in sediments.

Methods

LDH were synthesized through an acid leaching method at constant pH followed by precipitation, applied on waste paper fly ash (WPFA) and biomass fly ash (BFA), obtained from industries of the Hauts de France region. The synthesized LDH (LDHWPFA and LDHBFA) were calcinated at 450 °C, their physico-chemical and adsorption properties were then compared before and after calcination, with a commercial hydrotalcite (HT).

Results

The XRD diffractograms of synthesized LDH showed characteristic bands of hydrocalumite Ca4Al2(OH)12(Cl,CO3,OH)2·4H2O and paraalumohydrocalcite (CaAl2(CO3)(OH)4.6H2O) for LDHWPFA and LDHBFA, respectively. The FTIR spectra showed similar patterns to LDH containing interlamellar anions (CO32− and OH) in the vicinity of 1360 cm−1 and 3600 cm−1. The LDH morphology presented platelets and hexagonal block shapes with some octahedral forms. The batch and column adsorption results showed that more than 98% of Sb, Zn and SO42− were stabilized when the sediment matrix was amended with 5% of calcinated LDHWPFA, compared to untreated sediment, due to the negative charge of the surface.

Conclusion

Synthesized LDH were able to stabilize both cationic species (by adsorption and electrostatic attraction), and anionic species (by anion exchange) inside the sediment matrix.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

This manuscript has data included as electronic supplementary material.

References

  1. É. Ruin, Les enjeux du transport fluvial. Métropolitiques, 2013

  2. R. Boutin, Amélioration des connaissances sur le comportement des rejets en mer de produits de dragage de type vase: phénomènes à court terme et dans le champ proche, PhD Thesis, Lyon, INSA, 1999.

  3. SedNet. European Sediment Network. https://sednet.org/(consulté le 15 mai 2022).

  4. C. Alzieu, Dragages et environnement marin: état des connaissances = Dredging and marine environment: state of the art. 1999. Consulté le: 15 mai 2022. [En ligne]. Disponible sur: https://www.vliz.be/en/imis?refid=17902

  5. Tran, N.T.: Valorisation de sédiments marins et fluviaux en technique routière. Université d’Artois, Arras (2009)

    Google Scholar 

  6. Mkahal, Z., Mamindy-Pajany, Y., Maherzii, W., Abriak, N.-E.: Recycling of mineral solid wastes in backfill road materials: technical and environmental investigations. Waste Biomass Valor 13, 667–687 (2022). https://doi.org/10.1007/s12649-021-01544-5

    Article  Google Scholar 

  7. Levacher, D., Dhervilly, P.: Déshydratation mécanisée in situ de sédiments fraîchement dragués ou mis en dépôts: le projet SEDIGATE® I, XIèmes Journées Nationales Génie Côtier-Génie Civil. Sables d’Olonne, France (2010)

    Google Scholar 

  8. Agostini, F., Skoczylas, F., Lafhaj, Z.: About a possible valorisation in cementitious materials of polluted sediments after treatment. Cement Concrete Compos. 29, 270–278 (2007). https://doi.org/10.1016/j.cemconcomp.2006.11.012

    Article  Google Scholar 

  9. Yu, G., Lei, H., Bai, T., Li, Z., Yu, Q., Song, X.: In-situ stabilisation followed by ex-situ composting for treatment and disposal of heavy metals polluted sediments. J. Environ. Sci. 21, 877–883 (2009). https://doi.org/10.1016/S1001-0742(08)62357-8

    Article  Google Scholar 

  10. Förstner, U.: Geochemical techniques on contaminated sediments-river basin view. Environ. Sci. Pollut. Res. 10, 58–68 (2003). https://doi.org/10.1065/espr2003.01.145

    Article  Google Scholar 

  11. Qian, G., Chen, W., Lim, T.T., Chui, P.: In-situ stabilization of Pb, Zn, Cu, Cd and Ni in the multi-contaminated sediments with ferrihydrite and apatite composite additives. J. Hazard. Mater. 170, 1093–1100 (2009). https://doi.org/10.1016/j.jhazmat.2009.05.093

    Article  Google Scholar 

  12. Tao, Q., Zhang, Y., Zhang, X., Yuan, P., He, H.: Synthesis and characterization of layered double hydroxides with a high aspect ratio. J. Solid State Chem. 179, 708–715 (2006). https://doi.org/10.1016/j.jssc.2005.11.023

    Article  Google Scholar 

  13. Bocher, F., Géhin, A., Ruby, C., Ghanbaja, J., Abdelmoula, M., Génin, J.-M.R.: Coprecipitation of Fe(II–III) hydroxycarbonate green rust stabilised by phosphate adsorption. Solid State Sci. 6, 117–124 (2004). https://doi.org/10.1016/j.solidstatesciences.2003.10.004

    Article  Google Scholar 

  14. Olfs, H.-W., Torres-Dorante, L.O., Eckelt, R., Kosslick, H.: Comparison of different synthesis routes for Mg–Al layered double hydroxides (LDH): characterization of the structural phases and anion exchange properties. Appl. Clay Sci. 43, 459–464 (2009). https://doi.org/10.1016/j.clay.2008.10.009

    Article  Google Scholar 

  15. Hutson, N.D., Attwood, B.C.: High temperature adsorption of CO2 on various hydrotalcite-like compounds. Adsorption 14, 781–789 (2008). https://doi.org/10.1007/s10450-007-9085-6

    Article  Google Scholar 

  16. Chibwe, K., Jones, W.: Synthesis of polyoxometalate pillared layered double hydroxides via calcined precursors. Chem. Mater. 1, 489–490 (1989)

    Article  Google Scholar 

  17. Elbasuney, S.: Surface engineering of layered double hydroxide (LDH) nanoparticles for polymer flame retardancy. Powder Technol. 277, 63–73 (2015). https://doi.org/10.1016/j.powtec.2015.02.044

    Article  Google Scholar 

  18. Tamura, H., Chiba, J., Ito, M., Takeda, T., Kikkawa, S.: Synthesis and characterization of hydrotalcite-ATP intercalates. Solid State Ionics 172, 607–609 (2004). https://doi.org/10.1016/j.ssi.2004.04.035

    Article  Google Scholar 

  19. Zhang, H., et al.: Synthesis of a hydrotalcite-like compound from oil shale ash and its application in uranium removal. Coll. Surf. A 444, 129–137 (2014). https://doi.org/10.1016/j.colsurfa.2013.12.054

    Article  Google Scholar 

  20. Galindo, R., López-Delgado, A., Padilla, I., Yates, M.: Synthesis and characterisation of hydrotalcites produced by an aluminium hazardous waste: a comparison between the use of ammonia and the use of triethanolamine. Appl. Clay Sci. 115, 115–123 (2015). https://doi.org/10.1016/j.clay.2015.07.032

    Article  Google Scholar 

  21. Kuwahara, Y., Ohmichi, T., Kamegawa, T., Mori, K., Yamashita, H.: A novel conversion process for waste slag: synthesis of a hydrotalcite -like compound and zeolite from blast furnace slag and evaluation of adsorption capacities. J. Mater. Chem. 20(24), 5052–5062 (2010). https://doi.org/10.1039/C0JM00518E

    Article  Google Scholar 

  22. Kuwahara, Y., Tsuji, K., Ohmichi, T., Kamegawa, T., Mori, K., Yamashita, H.: Transesterifications using a hydrocalumite synthesized from waste slag: an economical and ecological route for biofuel production. Catal. Sci. Technol. 2(9), 1842–1851 (2012). https://doi.org/10.1039/C2CY20113E

    Article  Google Scholar 

  23. Volli, V., Purkait, M.K.: Preparation and characterization of hydrotalcite-like materials from flyash for transesterification. Clean Techn. Environ. Policy. 18(2), 529–540 (2015). https://doi.org/10.1007/s10098-015-1036-4

    Article  Google Scholar 

  24. Theiss, F.L., Couperthwaite, S.J., Ayoko, G.A., Frost, R.L.: A review of the removal of anions and oxyanions of the halogen elements from aqueous solution by layered double hydroxides. J. Coll. Interface Sci. 417, 356–368 (2014). https://doi.org/10.1016/j.jcis.2013.11.040

    Article  Google Scholar 

  25. Châtelet, L., Bottero, J.Y., Yvon, J., Bouchelaghem, A.: Competition between monovalent and divalent anions for calcined and uncalcined hydrotalcite: anion exchange and adsorption sites. Coll. Surf. A: Physicochem. Eng. Asp. 111(3), 167–175 (1996). https://doi.org/10.1016/0927-7757(96)03542-X

    Article  Google Scholar 

  26. Wang, J., Kang, D., Yu, X., Ge, M., Chen, Y.: Synthesis and characterization of Mg–Fe–La trimetal composite as an adsorbent for fluoride removal. Chem. Eng. J. 264, 506–513 (2015). https://doi.org/10.1016/j.cej.2014.11.130

    Article  Google Scholar 

  27. Extremera, R., Pavlovic, I., Pérez, M.R., Barriga, C.: Removal of acid orange 10 by calcined Mg/Al layered double hydroxides from water and recovery of the adsorbed dye. Chem. Eng. J. 213, 392–400 (2012). https://doi.org/10.1016/j.cej.2012.10.042

    Article  Google Scholar 

  28. Goh, K.-H., Lim, T.-T., Dong, Z.: Application of layered double hydroxides for removal of oxyanions: a review. Water Res. 42(6), 1343–1368 (2008). https://doi.org/10.1016/j.watres.2007.10.043

    Article  Google Scholar 

  29. Halajnia, A., Oustan, S., Najafi, N., Khataee, A.R., Lakzian, A.: The adsorption characteristics of nitrate on Mg–Fe and Mg–Al layered double hydroxides in a simulated soil solution. Appl. Clay Sci. 70, 28–36 (2012). https://doi.org/10.1016/j.clay.2012.09.007

    Article  Google Scholar 

  30. de Sá, F.P., Cunha, B.N., Nunes, L.M.: Effect of pH on the adsorption of sunset yellow FCF food dye into a layered double hydroxide (CaAl-LDH-NO3). Chem. Eng. J. 215–216, 122–127 (2013). https://doi.org/10.1016/j.cej.2012.11.024

    Article  Google Scholar 

  31. Miyata, S.: Anion-exchange properties of hydrotalcite-like compounds. Clays Clay Miner. 31(4), 305–311 (1983). https://doi.org/10.1346/CCMN.1983.0310409

    Article  Google Scholar 

  32. Goswamee, R.L., Sengupta, P., Bhattacharyya, K.G., Dutta, D.K.: Adsorption of Cr(VI) in layered double hydroxides. Appl. Clay Sci. 13(1), 21–34 (1998). https://doi.org/10.1016/S0169-1317(98)00010-6

    Article  Google Scholar 

  33. Kagunya, W., Chibwe, M., Jones, W.: Synthesis and structural characterisation of LDH-organic intercalates. Mole. Cryst Liq. Cryst. Sci. Technol. Sect. A Mole. Cryst. Liq. Cryst. 244(1), 155–160 (1994). https://doi.org/10.1080/10587259408050097

    Article  Google Scholar 

  34. Kameda, T., Yoshioka, T., Uchida, M., Miyano, Y., Okuwaki, A.: New treatment method for dilute hydrochloric acid using magnesium-aluminum oxide. BCSJ 75(3), 595–599 (2002). https://doi.org/10.1246/bcsj.75.595

    Article  Google Scholar 

  35. Kameda, T., Yabuuchi, F., Yoshioka, T., Uchida, M., Okuwaki, A.: New method of treating dilute mineral acids using magnesium–aluminum oxide. Water Res. 37(7), 1545–1550 (2003). https://doi.org/10.1016/S0043-1354(02)00374-3

    Article  Google Scholar 

  36. Parker, L.M., Milestone, N.B., Newman, R.H.: The use of hydrotalcite as an anion absorbent. Ind. Eng. Chem. Res. 34(4), 1196–1202 (1995)

    Article  Google Scholar 

  37. Houri, B., Legrouri, A., Barroug, A., Forano, C., Besse, J.-P.: Use of the ion-exchange properties of layered double hydroxides for water purification. Collect Czech. Chem. Commun. 63(5), 732–740 (1998). https://doi.org/10.1135/cccc19980732

    Article  Google Scholar 

  38. Inacio, J., Taviot-Guého, C., Forano, C., Besse, J.P.: Adsorption of MCPA pesticide by MgAl-layered double hydroxides. Appl. Clay Sci. 18(5), 255–264 (2001). https://doi.org/10.1016/S0169-1317(01)00029-1

    Article  Google Scholar 

  39. N. Drici. 2015. Hydroxydes doubles lamellaires, synthèse, caractérisation et propriétés. PhD Thesis, Université Sorbonne Paris Cité

  40. Bouzar, B., Mamindy-Pajany, Y.: Immobilization study of As, Cr, Mo, Pb, Sb, Se and Zn in geopolymer matrix: application to shooting range soil and biomass fly ash. Int. J. Environ. Sci. Tech. https://doi.org/10.1007/s13762-023-04788-x

  41. Bouzar, B., Mamindy-Pajany, Y.: Manufacture and characterization of carbonated lightweight aggregates from waste paper fly ash. Powder Technol. (2022). https://doi.org/10.1016/j.powtec.2022.117583

    Article  Google Scholar 

  42. AFNOR. 2000. NF ISO 13320–1, Laser diffraction methods.

  43. AFNOR. 2012. NF EN 933–1 “Test for geometrical properties of aggresgates”.

  44. AFNOR. 2020. NF EN 933–2 “Test for geometrical properties of aggresgates”.

  45. AFNOR. 2006. NF EN ISO 18757, Determination of specific surface area pf ceramic powders by gas adsorption using the BET method.

  46. AFNOR. 2009. NF EN 15326, Measurement of density and specific gravity.

  47. AFNOR. 2000. NF EN 12879, Characterization of sludges.

  48. AFNOR. 2002. NF EN 12457–2, Leaching-Compliance test for leaching of granular wasre materials ans sludges.

  49. Bouzar, B., Mamindy-Pajany, Y.: Phosphorus removal from real and synthetic wastewater using biomass bottom ash. Int. J. Environ. Sci. Technol. (2022). https://doi.org/10.1007/s13762-022-04451-x

    Article  Google Scholar 

  50. AFNOR. 2017. NF EN 14405, Characterization of waste — Leaching behaviour test — Up-flow percolation test (under specified conditions).

  51. Husein Malkawi, A.I., Alawneh, A.S., Abu-Safaqah, O.T.: Effects of organic matter on the physical and the physicochemical properties of an illitic soil. Appl. Clay Sci. 14(5), 257–278 (1999). https://doi.org/10.1016/S0169-1317(99)00003-4

    Article  Google Scholar 

  52. Muriithi, G.N., Petrik, L.F., Gitari, W.M., Doucet, F.J.: Synthesis and characterization of hydrotalcite from South African coal fly ash. Powder Technol. 312, 299–309 (2017). https://doi.org/10.1016/j.powtec.2017.02.018

    Article  Google Scholar 

  53. Barriga, C., Gaitán, M., Pavlovic, I., Ulibarri, M.A., Hermosĩn, M.C., Cornejo, J.: Hydrotalcites as sorbent for 2,4,6-trinitrophenol : influence of the layer composition and interlayer anion. J. Mater. Chem. 12(4), 1027–1034 (2002). https://doi.org/10.1039/B107979B

    Article  Google Scholar 

  54. Lakraimi, M., Legrouri, A., Barroug, A., Roy, A.D., Besse, J.P.: Preparation of a new stable hybrid material by chloride–2,4-dichlorophenoxyacetate ion exchange into the zinc–aluminium–chloride layered double hydroxide. J. Mater. Chem. 10(4), 1007–1011 (2000). https://doi.org/10.1039/A909047I

    Article  Google Scholar 

  55. Aramendía, M.A., et al.: Thermal decomposition of Mg/Al and Mg/Ga layered-double hydroxides: a spectroscopic study. J. Mater. Chem. 9(7), 1603–1607 (1999). https://doi.org/10.1039/A900535H

    Article  Google Scholar 

  56. Reichle, W.T.: Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite). Solid State Ion. 22(1), 135–141 (1986). https://doi.org/10.1016/0167-2738(86)90067-6

    Article  Google Scholar 

  57. Khan, A.I., O’Hare, D.: Intercalation chemistry of layered double hydroxides: recent developments and applications. J. Mater Chem. 12(11), 3191–3198 (2002). https://doi.org/10.1039/B204076J

    Article  Google Scholar 

  58. George, G., Saravanakumar, M.P.: Facile synthesis of carbon-coated layered double hydroxide and its comparative characterisation with Zn–Al LDH: application on crystal violet and malachite green dye adsorption—isotherm, kinetics and Box-Behnken design. Environ. Sci. Pollut. Res. 25(30), 30236–30254 (2018). https://doi.org/10.1007/s11356-018-3001-3

    Article  Google Scholar 

  59. Crepaldi, E.L., Tronto, J., Cardoso, L.P., Valim, J.B.: Sorption of terephthalate anions by calcined and uncalcined hydrotalcite-like compounds. Coll. Surf. A: Physicochem. Eng. Asp. 211(2), 103–114 (2002). https://doi.org/10.1016/S0927-7757(02)00233-9

    Article  Google Scholar 

  60. You, Y., Zhao, H., Vance, G.F.: Hybrid organic–inorganic derivatives of layered double hydroxides and dodecylbenzenesulfonate: preparation and adsorption characteristics. J. Mater. Chem. 12(4), 907–912 (2002). https://doi.org/10.1039/B106811C

    Article  Google Scholar 

  61. Fernandez, J.M., Ulibarri, M.A., Labajos, F.M., Rives, V.: The effect of iron on the crystalline phases formed upon thermal decomposition of Mg-Al-Fe hydrotalcites. J. Mater. Chem. 8(11), 2507–2514 (1998). https://doi.org/10.1039/A804867C

    Article  Google Scholar 

  62. Deng, L., Shi, Z.: Synthesis and characterization of a novel Mg–Al hydrotalcite-loaded kaolin clay and its adsorption properties for phosphate in aqueous solution. J. Alloys Compd. 637, 188–196 (2015)

    Article  Google Scholar 

  63. Gevers, B.R., Labuschagné, F.J.: Green Synthesis of Hydrocalumite (CaAl-OH-LDH) from Ca(OH)2 and Al(OH)3 and the parameters that influence its formation and speciation. Crystals (2020). https://doi.org/10.3390/cryst10080672

    Article  Google Scholar 

  64. You, Y., Zhao, H., Vance, G.F.: Surfactant-enhanced adsorption of organic compounds by layered double hydroxides. Coll. Surf. A: Physicochem. Eng. Asp. 205(3), 161–172 (2002). https://doi.org/10.1016/S0927-7757(01)01137-2

    Article  Google Scholar 

  65. You, Y., Zhao, H., Vance, G.F.: Adsorption of dicamba (3,6-dichloro-2-methoxy benzoic acid) in aqueous solution by calcined–layered double hydroxide. Appl. Clay Sci. 21(5), 217–226 (2002). https://doi.org/10.1016/S0169-1317(01)00102-8

    Article  Google Scholar 

  66. Rives, V., Kannan, S.: Layered double hydroxides with the hydrotalcite-type structure containing Cu2+, Ni2+ and Al3+. J. Mater. Chem. 10(2), 489–495 (2000). https://doi.org/10.1039/A908534C

    Article  Google Scholar 

  67. Leaustic, A., Babonneau, F., Livage, J.: Structural investigation of the hydrolysis-condensation process of titanium alkoxides Ti (OR) 4 (OR= OPr-iso, OEt) modified by acetylacetone 1 study of the alkoxide modification. Chem. Mater. 1(2), 240–247 (1989)

    Article  Google Scholar 

  68. Smith, M.B.: March’s advanced organic chemistry: reactions, mechanisms, and structure. Wiley, New Jersey (2020)

    Google Scholar 

  69. Aramendía, M.A., Boráu, V., Jiménez, C., Marinas, J.M., Porras, A., Urbano, F.J.: Synthesis and characterization of MgO-B 2 O 3 mixed oxides prepared by coprecipitation; selective dehydrogenation of propan-2-ol. J. Mater. Chem. 9(3), 819–825 (1999). https://doi.org/10.1039/A807536K

    Article  Google Scholar 

  70. Aramendía, M.Á., Borau, V., Jiménez, C., Marinas, J.M., Romero, F.J., Urbano, F.J.: Synthesis and characterization of a novel Mg/In layered double hydroxide. J. Mater. Chem. 9(10), 2291–2292 (1999)

    Article  Google Scholar 

  71. Pausch, I., Lohse, H.-H., Schürmann, K., Allmann, R.: Syntheses of disordered and Al-rich hydrotalcite-like compounds. Clays Clay Miner. 34(5), 507–510 (1986). https://doi.org/10.1346/CCMN.1986.0340502

    Article  Google Scholar 

  72. Reichle, W.T.: Catalytic reactions by thermally activated, synthetic, anionic clay minerals. J. Catal. 94(2), 547–557 (1985). https://doi.org/10.1016/0021-9517(85)90219-2

    Article  Google Scholar 

  73. Kooli, F., Depège, C., Ennaqadi, A., de Roy, A., Besse, J.P.: Rehydration of Zn-Al Layered double hydroxides. Clays Clay Miner. 45(1), 92–98 (1997). https://doi.org/10.1346/CCMN.1997.0450111

    Article  Google Scholar 

  74. Forano, C., Costantino, U., Prevot, V., Gueho, C.T.: Layered Double Hydroxides (LDH). In: Bergaya, F., Lagaly, G. (eds.) Developments in Clay Science. Elsevier, Amsterdam (2013)

  75. Lin, Y., Fang, Q., Chen, B.: Perchlorate uptake and molecular mechanisms by magnesium/aluminum carbonate layered double hydroxides and the calcined layered double hydroxides. Chem. Eng. J. 237, 38–46 (2014). https://doi.org/10.1016/j.cej.2013.10.004

  76. C. Forano, T. Hibino, F. Leroux, et C Taviot-Guého. 2006. Chapter 131 Layered Double Hydroxides. In: F Bergaya, B K G Theng, et G Lagaly (Éds), Developments in Clay Science, Elsevier, Amstersdam

  77. Rousselot, I., Taviot-Guého, C., Leroux, F., Léone, P., Palvadeau, P., Besse, J.-P.: Insights on the structural chemistry of hydrocalumite and hydrotalcite-like materials: investigation of the series Ca2M3+(OH)6Cl·2H2O (M3+: Al3+, Ga3+, Fe3+, and Sc3+) by X-ray powder diffraction. J. Solid State Chem. 167(1), 137–144 (2002). https://doi.org/10.1006/jssc.2002.9635

    Article  Google Scholar 

  78. Prinetto, F., Ghiotti, G., Graffin, P., Tichit, D.: Synthesis and characterization of sol–gel Mg/Al and Ni/Al layered double hydroxides and comparison with co-precipitated samples. Microporous Mesoporous Mater. 39(1), 229–247 (2000). https://doi.org/10.1016/S1387-1811(00)00197-9

    Article  Google Scholar 

  79. Faour, A., Prévot, V., Taviot-Gueho, C.: Microstructural study of different LDH morphologies obtained via different synthesis routes. J. Phys. Chem. Solids 71(4), 487–490 (2010). https://doi.org/10.1016/j.jpcs.2009.12.018

    Article  Google Scholar 

  80. Kloprogge, J.T., Hickey, L., Frost, R.L.: The effects of synthesis pH and hydrothermal treatment on the formation of zinc aluminum hydrotalcites. J. Solid State Chem. 177(11), 4047–4057 (2004). https://doi.org/10.1016/j.jssc.2004.07.010

    Article  Google Scholar 

  81. León, M., Díaz, E., Bennici, S., Vega, A., Ordóñez, S., Auroux, A.: Adsorption of CO2 on hydrotalcite-derived mixed oxides: Sorption mechanisms and consequences for adsorption irreversibility. Ind. Eng. Chem. Res. 49(8), 3663–3671 (2010). https://doi.org/10.1021/ie902072a

    Article  Google Scholar 

  82. Sharma, S.K., Kushwaha, P.K., Srivastava, V.K., Bhatt, S.D., Jasra, R.V.: Effect of hydrothermal conditions on structural and textural properties of synthetic hydrotalcites of varying Mg/Al ratio. Ind. Eng. Chem. Res. 46(14), 4856–4865 (2007). https://doi.org/10.1021/ie061438w

    Article  Google Scholar 

  83. López Nieto, J.M., Dejoz, A., Vazquez, M.I.: Preparation, characterization and catalytic properties of vanadium oxides supported on calcined Mg/Al-hydrotalcite. Appl. Catal. A: Gener. 132(1), 41–59 (1995). https://doi.org/10.1016/0926-860X(95)00153-0

    Article  Google Scholar 

  84. López-salinas, E., Torres-garcía, E., García-sánchez, M.: THERMAL BEHAVIOR OF HYDROTALCITE-LIKE [Mg1−xGax(OH)2](CO3)x/2·mH2O AS A FUNCTION OF GALLIUM CONTENT. J. Phys. Chem. Solids 58(6), 919–925 (1997). https://doi.org/10.1016/S0022-3697(96)00210-7

    Article  Google Scholar 

  85. Acceptabilité de matériaux alternatifs en technique routière - Evaluation environnementale, Cerema. http://www.cerema.fr/fr/centre-ressources/boutique/acceptabilite-materiaux-alternatifs-technique-routiere (consulté le 8 mars 2022).

  86. M. Bekkouche. 2014. Synthèse, Caractérisation d’hydroxydes lamellaires type Cu-M (M= Al, Fe) et application dans le traitement de l’eau. Mémoire de magister, université des Sciences et de la technologie-Mohamed.

  87. Mamindy-Pajany, Y., Hurel, C., Geret, F., Roméo, M., Marmier, N.: Comparison of mineral-based amendments for ex-situ stabilization of trace elements (As, Cd, Cu, Mo, Ni, Zn) in marine dredged sediments: a pilot-scale experiment. J. Hazard. Mater. 252–253, 213–219 (2013). https://doi.org/10.1016/j.jhazmat.2013.03.001

    Article  Google Scholar 

  88. Lions, J., van der Lee, J., Guérin, V., Bataillard, P., Laboudigue, A.: Zinc and cadmium mobility in a 5-year-old dredged sediment deposit: experiments and modelling. J Soils Sedim. 7(4), 207–215 (2007). https://doi.org/10.1065/jss2007.05.226

    Article  Google Scholar 

  89. Garnier, J.-M., Ciffroy, P., Benyahya, L.: Implications of short and long term (30 days) sorption on the desorption kinetic of trace metals (Cd, Zn Co, Mn, Fe, Ag, Cs) associated with river suspended matter. Sci. Total Environ. 366(1), 350–360 (2006). https://doi.org/10.1016/j.scitotenv.2005.07.015

    Article  Google Scholar 

  90. Isaure, M.-P., et al.: Quantitative Zn speciation in a contaminated dredged sediment by μ-PIXE, μ-SXRF, EXAFS spectroscopy and principal component analysis. Geochim. Cosmochim. Acta 66(9), 1549–1567 (2002). https://doi.org/10.1016/S0016-7037(01)00875-4

    Article  Google Scholar 

  91. Guimarães, D., et al.: Precipitation of a layered double hydroxide comprising Mg2+ and Al3+ to remove sulphate ions from aqueous solutions. J. Environ. Chem. Eng. 7(1), 102815 (2019). https://doi.org/10.1016/j.jece.2018.102815

    Article  Google Scholar 

  92. Dong, Y., Kong, X., Luo, X., Wang, H.: Adsorptive removal of heavy metal anions from water by layered double hydroxide: a review. Chemosphere 303, 134685 (2022). https://doi.org/10.1016/j.chemosphere.2022.134685

    Article  Google Scholar 

  93. L. Zhao. 2016. Développement et mise en oeuvre de nouveaux matériaux adsorbants d’anions à base de ferrihydrite ou d’Hydroxydes Doubles Lamellaires intégrés dans un gel d’alginate. PhD Thesis, Limoges, 2016.

  94. Mohammadi, M., Mohammadi Torkashvand, A., Biparva, P., Esfandiari, M.: Synthesis ratios of Mg-Al and Zn-Al layered double hydroxides efficiency and selectivity in nitrate removal from solution. Global J. Environ. Sci. Manag. 5(4), 485–500 (2019). https://doi.org/10.22034/GJESM.2019.04.08

    Article  Google Scholar 

  95. Guan, X., et al.: Application of functionalized layered double hydroxides for heavy metal removal: a review. Sci. Total Environ. 838, 155693 (2022). https://doi.org/10.1016/j.scitotenv.2022.155693

    Article  Google Scholar 

  96. Park, M., et al.: Reactions of Cu2+ and Pb2+ with Mg/Al layered double hydroxide. Appl. Clay Sci. 37(1), 143–148 (2007). https://doi.org/10.1016/j.clay.2006.12.006

    Article  Google Scholar 

  97. Fang, Q., et al.: Application of layered double hydroxide-biochar composites in wastewater treatment: recent trends, modification strategies, and outlook. J. Hazard. Mater. 420, 126569 (2021). https://doi.org/10.1016/j.jhazmat.2021.126569

    Article  Google Scholar 

  98. Lyu, P., Wang, G., Cao, Y., Wang, B., Deng, N.: Phosphorus-modified biochar cross-linked Mg–Al layered double-hydroxide composite for immobilizing uranium in mining contaminated soil. Chemosphere 276, 130116 (2021). https://doi.org/10.1016/j.chemosphere.2021.130116

    Article  Google Scholar 

  99. Ardau, C., Frau, F., Lattanzi, P.: Antimony removal from aqueous solutions by the use of Zn-Al sulphate layered double hydroxide. Water Air Soil Pollut. 227(9), 344 (2016). https://doi.org/10.1007/s11270-016-3048-z

    Article  Google Scholar 

  100. Matusik, J., Rybka, K.: Removal of chromates and sulphates by Mg/Fe LDH and heterostructured LDH/halloysite materials: efficiency, selectivity, and stability of adsorbents in single- and multi-element systems. Materials (2019). https://doi.org/10.3390/ma12091373

    Article  Google Scholar 

  101. Mahjoubi, F.Z., Khalidi, A., Abdennouri, M., Barka, N.: Zn–Al layered double hydroxides intercalated with carbonate, nitrate, chloride and sulphate ions: synthesis, characterisation and dye removal properties. J. Taibah Univ. Sci. 11(1), 90–100 (2017). https://doi.org/10.1016/j.jtusci.2015.10.007

    Article  Google Scholar 

  102. Halajnia, A., Oustan, S., Najafi, N., Khataee, A.R., Lakzian, A.: Adsorption–desorption characteristics of nitrate, phosphate and sulfate on Mg–Al layered double hydroxide. Appl. Clay Sci. 80, 305–312 (2013)

    Article  Google Scholar 

  103. Letshwenyo, M.W., Mokokwe, G.: Phosphorus and sulphates removal from wastewater using copper smelter slag washed with acid. SN Appl. Sci. 3(12), 854 (2021). https://doi.org/10.1007/s42452-021-04843-7

    Article  Google Scholar 

  104. Cao, Y., Guo, Q., Liang, M., Sun, W.: Sb(III) and Sb(V) removal from water by a hydroxyl-intercalated, mechanochemically synthesized Mg-Fe-LDH. Appl. Clay Sci. 196, 105766 (2020). https://doi.org/10.1016/j.clay.2020.105766

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge technical contributions of the chemistry pole of Institut Mines-Télécom and Institut de Physique de Nice. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bader Bouzar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 79 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzar, B., Mamindy-Pajany, Y. & Hurel, C. Innovative Reuse of Fly Ashes for Treatment of a Contaminated River Sediment: Synthesis of Layered Double Hydroxides (LDH) and Chemical Performance Assessments. Waste Biomass Valor 14, 3923–3945 (2023). https://doi.org/10.1007/s12649-023-02056-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02056-0

Keywords

Navigation