Skip to main content

Advertisement

Log in

Advances in Biomass-Based Levulinic Acid Production

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Levulinic acid (LA) was discovered in 1875 by heating candy with concentrated acid. Since then, it has been generated in a variety of ways from commercial sugars and their products in-cluding glucose, fructose, cellulose, 5-(hydroxymethyl)furfural (5-HMF), maleic anhydride and furfuryl alcohol. However, the concern of food security has led to search for sustainable feedstock for the production of LA such as biomass. Although the use of biomass as substrate for LA synthesis offer various advantages, however, the shift to a bioeconomy remains difficult due to the several contributing variables that must be addressed, as detailed in this review. Various catalysts, including homogeneous, heterogeneous, and ionic liquids, have been employed in the development of an ecologically acceptable and lucrative method for producing LA from biomass. This study examines the literature on LA production from 1875 to 2021, what has been accomplished, and what ongoing obstacles exist.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yan, K., Jarvis, C., Gu, J., Yan, Y.: Production and catalytic transformation of levulinic acid: A platform for speciality chemicals and fuels. Renew. Sustain. Energy Rev. 51, 986–997 (2015)

    Article  Google Scholar 

  2. Kurian, J.K., Nair, G.R., Hussain, A., Raghavan, G.V.: Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries: A comprehensive review. Renew. Sustain. Energy Rev. 25, 205–219 (2013)

    Article  Google Scholar 

  3. Lomba, L., Giner, B., Bandrés, I., Lafuente, C., Pino, M.R.: Physicochemical properties of green solvents derived from biomass. Green Chem. 13(8), 2062–2070 (2011)

    Article  Google Scholar 

  4. Ariba, H., Wang, Y., Devouge-Boyer, C., Stateva, R.P., Leveneur, S.: Physicochemical properties for the reaction systems: Levulinic acid, its esters, and γ-valerolactone. J. Chem. Eng. Data 65(6), 3008–3020 (2020)

    Article  Google Scholar 

  5. Mthembu, L.D., Lokhat, D., Deenadayalu, N.: Catalytic condensation of depithed sugarcane bagasse derived levulinic acid into diphenolic acid. BioResources 16(2), 2235–2248 (2021)

    Article  Google Scholar 

  6. Delgado, J., Salcedo, W.N.V., Bronzetti, G., Moreno, V.C., Mignot, M., Legros, J., Held, C., Grénman, H., Leveneur, S.: Kinetic model assessment for the synthesis of γ-valerolactone from n-butyl levulinate and levulinic acid hydrogenation over the synergy effect of dual catalysts Ru/C and Amberlite IR-120. Chem. Eng. J. 430, 133053 (2022)

    Article  Google Scholar 

  7. Wang, Y., Cipolletta, M., Vernières-Hassimi, L., Casson-Moreno, V., Leveneur, S.: Application of the concept of linear free energy relationships to the hydrogenation of levulinic acid and its corresponding esters. Chem. Eng. J. 374, 822–831 (2019)

    Article  Google Scholar 

  8. Piskun, A., Van de Bovenkamp, H., Rasrendra, C., Winkelman, J., Heeres, H.: Kinetic modeling of levulinic acid hydrogenation to γ-valerolactone in water using a carbon supported Ru catalyst. Appl. Catal. A 525, 158–167 (2016)

    Article  Google Scholar 

  9. Mthembu, L., Lokhat, D., Deenadayalu, N.: Esterification of levulinic acid to ethyl levulinate: optimization of process conditions using commercial levulinic acid and extension to the use of levulinic acid derived from depithed sugarcane bagasse. Biomass Conversion and Biorefinery (2021). https://doi.org/10.1007/s13399-021-01632-5

    Article  Google Scholar 

  10. Russo, V., Tesser, R., Rossano, C., Cogliano, T., Vitiello, R., Leveneur, S., Di Serio, M.: Kinetic study of Amberlite IR120 catalyzed acid esterification of levulinic acid with ethanol: From batch to continuous operation. Chem. Eng. J. 401, 126126 (2020)

    Article  Google Scholar 

  11. Démolis, A., Essayem, N., Rataboul, F.: Synthesis and applications of alkyl levulinates. ACS Sustain. Chem. Eng. 2(6), 1338–1352 (2014)

    Article  Google Scholar 

  12. da Costa Lopes, A.M., João, K.G., Morais, A.R.C., Bogel-Łukasik, E., Bogel-Łukasik, R.: Ionic liquids as a tool for lignocellulosic biomass fractionation. Sustain. Chem. Processes 1(1), 1–31 (2013)

    Article  Google Scholar 

  13. Rackemann, D.W., Doherty, W.O.: The conversion of lignocellulosics to levulinic acid. Biofuels, Bioprod. Biorefin. 5(2), 198–214 (2011)

    Article  Google Scholar 

  14. Di Bucchianico, D.D.M., Wang, Y., Buvat, J.-C., Pan, Y., Moreno, V.C., Leveneur, S.: Production of levulinic acid and alkyl levulinates: A process insight. Green Chem. 24(2), 614–646 (2022)

    Article  Google Scholar 

  15. Antonetti, C., Licursi, D., Fulignati, S., Valentini, G., Raspolli Galletti, A.M.: New frontiers in the catalytic synthesis of levulinic acid: From sugars to raw and waste biomass as starting feedstock. Catalysts 6(12), 196 (2016)

    Article  Google Scholar 

  16. https://www.businesswire.com/news/home/20210129005254/en/Global-Levulinic-Acid-Industry-2020-to-2027---Market-Trends-and-Drivers---ResearchAndMarkets.com (accessed 15 July 2021).

  17. https://www.researchandmarkets.com/reports/3877144/levulinic-acid-market-by-application (accessed 15 July 2021, 2021).

  18. https://www.marketdataforecast.com/market-reports/levulinic-acid-market

  19. Signoretto, M., Taghavi, S., Ghedini, E., Menegazzo, F.: Catalytic production of levulinic acid (LA) from actual biomass. Molecules 24(15), 2760 (2019)

    Article  Google Scholar 

  20. Cha, J., Hanna, M.: Levulinic acid production based on extrusion and pressurized batch reaction. Ind. Crops Prod. 16(2), 109–118 (2002)

    Article  Google Scholar 

  21. Ji, H., Dong, C., Yang, G., Pang, Z.: Production of levulinic acid from lignocellulosic biomass with a recyclable aromatic acid and its kinetic study. BioResources 14(1), 725–736 (2019)

    Article  Google Scholar 

  22. Lopes, E.S., Rivera, E.C., de Jesus Gariboti, J.C., Feistel, L.H.Z., Dutra, J.V., Maciel Filho, R., Tovar, L.P.: Kinetic insights into the lignocellulosic biomass-based levulinic acid production by a mechanistic model. Cellulose 27(10), 5641–5663 (2020)

    Article  Google Scholar 

  23. Meinita, M.D.N., Amron, A., Trianto, A., Harwanto, D., Caesarendra, W., Jeong, G.-T., Choi, J.-S.: Levulinic acid production from macroalgae: Production and promising potential in industry. Sustainability 13(24), 13919 (2021)

    Article  Google Scholar 

  24. Rihko-Struckmann, L.K., Oluyinka, O., Sahni, A., McBride, K., Fachet, M., Ludwig, K., Sundmacher, K.: Transformation of remnant algal biomass to 5-HMF and levulinic acid: Influence of a biphasic solvent system. RSC Adv. 10(42), 24753–24763 (2020)

    Article  Google Scholar 

  25. Suib, S.L.: New and future developments in catalysis: Catalytic biomass conversion. Newnes (2013)

    Google Scholar 

  26. Seretis, A., Diamantopoulou, P., Thanou, I., Tzevelekidis, P., Fakas, C., Lilas, P., Papadogianakis, G.: Recent advances in ruthenium-catalyzed hydrogenation reactions of renewable biomass-derived levulinic acid in aqueous media. Front. Chem. 8, 221 (2020)

    Article  Google Scholar 

  27. https://www.statista.com/statistics/249604/sugar-cane-production-worldwide/ (accessed 10 February 2019).

  28. Van der Poel, P.: Sugar technology: Beet and cane sugar manufacture/PW van der Poel, H. Schiweck, T. Schwartz. Verlag Dr. Albert Vartens KG, Berlin (1998)

    Book  Google Scholar 

  29. van der Poel, P.W.: Zuckertechnologie: Rüben-und Rohrzuckergewinnung. Bartens (2000)

    Google Scholar 

  30. Chandel, A.K., Antunes, F.A., Anjos, V., Bell, M.J., Rodrigues, L.N., Polikarpov, I., de Azevedo, E.R., Bernardinelli, O.D., Rosa, C.A., Pagnocca, F.C.: Multi-scale structural and chemical analysis of sugarcane bagasse in the process of sequential acid–base pretreatment and ethanol production by Scheffersomyces shehatae and Saccharomyces cerevisiae. Biotechnol. Biofuels 7(1), 1–17 (2014)

    Article  Google Scholar 

  31. Himmel, M.E., Ding, S.-Y., Johnson, D.K., Adney, W.S., Nimlos, M.R., Brady, J.W., Foust, T.D.: Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science 315(5813), 804–807 (2007)

    Article  Google Scholar 

  32. Abdulkhani, A., Marvast, E.H., Ashori, A., Karimi, A.N.: Effects of dissolution of some lignocellulosic materials with ionic liquids as green solvents on mechanical and physical properties of composite films. Carbohyd. Polym. 95(1), 57–63 (2013)

    Article  Google Scholar 

  33. Adav, S.S., Sze, S.K.: Trichoderma secretome: An overview. Biotechnol. Biol. Trichoderma (2014). https://doi.org/10.1016/B978-0-444-59576-8.00008-4

    Article  Google Scholar 

  34. Walford, S. Sugarcane bagasse: how easy is it to measure its constituents? In Proceedings of the Annual Congress-South African Sugar Technologists’ Association, no. 81: South African Sugar Technologists’ Association, pp. 266–273 (2008).

  35. Saha, B.C.: Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 30(5), 279–291 (2003)

    Article  Google Scholar 

  36. Ebringerová, A.: Structural diversity and application potential of hemicelluloses. Macromol Symposia 232(1), 1–12 (2005)

    Article  Google Scholar 

  37. Schmidt, L.M., Mthembu, L.D., Reddy, P., Deenadayalu, N., Kaltschmitt, M., Smirnova, I.: Levulinic acid production integrated into a sugarcane bagasse based biorefinery using thermal-enzymatic pretreatment. Ind. Crops Prod. 99, 172–178 (2017)

    Article  Google Scholar 

  38. Ya’aini, N., Amin, N.A.S., Asmadi, M.: Optimization of levulinic acid from lignocellulosic biomass using a new hybrid catalyst. Bioresour. Technol. 116, 58–65 (2012)

    Article  Google Scholar 

  39. Zhang, Y., Naebe, M.: Lignin: A review on structure, properties, and applications as a light-colored UV absorber. ACS Sustain. Chem. Eng. 9(4), 1427–1442 (2021)

    Article  Google Scholar 

  40. Galletti, A.M.R., Antonetti, C., De Luise, V., Licursi, D., Nassi, N.: Levulinic acid production from waste biomass. BioResources 7(2), 1824–1835 (2012)

    Google Scholar 

  41. Ramli, N.A.S., Amin, N.A.S.: Optimization of biomass conversion to levulinic acid in acidic ionic liquid and upgrading of levulinic acid to ethyl levulinate. BioEnergy Research 10(1), 50–63 (2017)

    Article  Google Scholar 

  42. Mthembu, L.D., Lokhat, D., Gupta, R., Deenadayalu, N.: Optimization of levulinic acid production from depithed sugarcane bagasse in 1-Ethyl-3-methylimidazolium hydrogen sulfate [EMim][HSO4]. Waste Biomass Valorization 12(6), 3179–3191 (2021)

    Article  Google Scholar 

  43. Lopes, E.S., Dominices, K., Lopes, M., Tovar, L., MacielFilho, R.: A green chemical production: obtaining levulinic acid from pretreated sugarcane bagasse. Chem. Eng. Trans. 57, 145–150 (2017)

    Google Scholar 

  44. Muranaka, Y., Suzuki, T., Sawanishi, H., Hasegawa, I., Mae, K.: Effective production of levulinic acid from biomass through pretreatment using phosphoric acid, hydrochloric acid, or ionic liquid. Ind. Eng. Chem. Res. 53(29), 11611–11621 (2014)

    Article  Google Scholar 

  45. Su, J., Shen, F., Qiu, M., Qi, X.: High-yield production of levulinic acid from pretreated cow dung in dilute acid aqueous solution. Molecules 22(2), 285 (2017)

    Article  Google Scholar 

  46. Gupta, R., Khasa, Y.P., Kuhad, R.C.: Evaluation of pretreatment methods in improving the enzymatic saccharification of cellulosic materials. Carbohyd. Polym. 84(3), 1103–1109 (2011)

    Article  Google Scholar 

  47. Liu, C., Lu, X., Yu, Z., Xiong, J., Bai, H., Zhang, R.: Production of levulinic acid from cellulose and cellulosic biomass in different catalytic systems. Catalysts 10(9), 1006 (2020)

    Article  Google Scholar 

  48. Gupta, R., Sharma, K.K., Kuhad, R.C.: Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498. Biores. Technol. 100(3), 1214–1220 (2009)

    Article  Google Scholar 

  49. Manzoor, A., Khokhar, Z.-U., Athar Hussain, U., Ahmad, S.A.: Dilute sulfuric acid: A cheap acid for optimization of bagasse pretreatment. Cellulose 10, 100 (2012)

    Google Scholar 

  50. Jędrzejczyk, M., Soszka, E., Czapnik, M., Ruppert, A.M., Grams, J. Physical and chemical pretreatment of lignocellulosic biomass. In Second and Third Generation of Feedstocks. Elsevier, pp. 143–196 (2019).

  51. Chen, W.-H., Tsai, C.-C., Lin, C.-F., Tsai, P.-Y., Hwang, W.-S.: Pilot-scale study on the acid-catalyzed steam explosion of rice straw using a continuous pretreatment system. Biores. Technol. 128, 297–304 (2013)

    Article  Google Scholar 

  52. Banerjee, S., Sen, R., Morone, A., Chakrabarti, T., Pandey, R., Mudliar, S.: Improved wet air oxidation pretreatment for enhanced enzymatic hydrolysis of rice husk for bioethanol production. Dyn Biochem Process Biotechnol Mol Biol 6(2), 43–45 (2012)

    Google Scholar 

  53. Murnen, H.K., Balan, V., Chundawat, S.P., Bals, B., Sousa, Ld.C., Dale, B.E.: Optimization of ammonia fiber expansion (AFEX) pretreatment and enzymatic hydrolysis of Miscanthus × giganteus to fermentable sugars. Biotechnol. Progress 23(4), 846–850 (2007)

    Article  Google Scholar 

  54. Hendriks, A., Zeeman, G.: Pretreatments to enhance the digestibility of lignocellulosic biomass. Biores. Technol. 100(1), 10–18 (2009)

    Article  Google Scholar 

  55. Carvalheiro, F., Duarte, L.C., Gírio, F.M. Hemicellulose biorefineries: A review on biomass pretreatments. Journal of Scientific & Industrial Research, pp. 849–864 (2008).

  56. Zhao, Y., Wang, Y., Zhu, J., Ragauskas, A., Deng, Y.: Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature. Biotechnol. Bioeng. 99(6), 1320–1328 (2008)

    Article  Google Scholar 

  57. Zhao, X., Cheng, K., Liu, D.: Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl. Microbiol. Biotechnol. 82(5), 815–827 (2009)

    Article  Google Scholar 

  58. Vasco-Correa, J., Ge, X., Li, Y. Biological pretreatment of lignocellulosic biomass. In Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery. Elsevier, pp. 561–585 (2016).

  59. Wan, C., Li, Y.: Fungal pretreatment of lignocellulosic biomass. Biotechnol. Adv. 30(6), 1447–1457 (2012)

    Article  Google Scholar 

  60. Merklein, K., Fong, S., Deng, Y. Biomass utilization. In Biotechnology for biofuel production and optimization. Elsevier, pp. 291–324 (2016).

  61. Pratama, A.P., Rahayu, D.U.C., Krisnandi, Y.K.: Levulinic acid production from delignified rice husk waste over manganese catalysts: Heterogeneous versus homogeneous. Catalysts 10(3), 327 (2020)

    Article  Google Scholar 

  62. Yan, L., Yang, N., Pang, H., Liao, B.: Production of levulinic acid from bagasse and paddy straw by liquefaction in the presence of hydrochloride acid. Clean-Soil Air Water 36(2), 158–163 (2008)

    Article  Google Scholar 

  63. Yang, Z., Kang, H., Guo, Y., Zhuang, G., Bai, Z., Zhang, H., Feng, C., Dong, Y.: Dilute-acid conversion of cotton straw to sugars and levulinic acid via 2-stage hydrolysis. Ind. Crops Prod. 46, 205–209 (2013)

    Article  Google Scholar 

  64. Girisuta, B., Janssen, L., Heeres, H.: Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid. Ind. Eng. Chem. Res. 46(6), 1696–1708 (2007)

    Article  Google Scholar 

  65. Efremov, A., Pervyshina, G., Kuznetsov, B.: Thermocatalytic transformations of wood and cellulose in the presence of HCl, HBr, and H 2 SO 4. Chem. Nat. Compd. 33(1), 84–88 (1997)

    Article  Google Scholar 

  66. Rackemann, D.W., Bartley, J.P., Doherty, W.O.: Methanesulfonic acid-catalyzed conversion of glucose and xylose mixtures to levulinic acid and furfural. Ind. Crops Prod. 52, 46–57 (2014)

    Article  Google Scholar 

  67. Rackemann, D.W.: Production of levulinic acid and other chemicals from sugarcane fibre. Queensland University of Technology (2014)

    Google Scholar 

  68. Morone, A., Apte, M., Pandey, R.: Levulinic acid production from renewable waste resources: Bottlenecks, potential remedies, advancements and applications. Renew. Sustain. Energy Rev. 51, 548–565 (2015)

    Article  Google Scholar 

  69. Kang, S., Fu, J., Zhang, G.: From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis. Renew. Sustain. Energy Rev. 94, 340–362 (2018)

    Article  Google Scholar 

  70. Weingarten, R., Conner, W.C., Huber, G.W.: Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst. Energy Environ. Sci. 5(6), 7559–7574 (2012)

    Article  Google Scholar 

  71. Hara, M.: Biodiesel production by amorphous carbon bearing SO 3 H, COOH and phenolic OH groups, a solid Brønsted acid catalyst. Top. Catal. 53(11–12), 805–810 (2010)

    Article  Google Scholar 

  72. Upare, P.P., Yoon, J.-W., Kim, M.Y., Kang, H.-Y., Hwang, D.W., Hwang, Y.K., Kung, H.H., Chang, J.-S.: Chemical conversion of biomass-derived hexose sugars to levulinic acid over sulfonic acid-functionalized graphene oxide catalysts. Green Chem. 15(10), 2935–2943 (2013)

    Article  Google Scholar 

  73. Ya’aini, N., Amin, N.A.S., Endud, S.: Characterization and performance of hybrid catalysts for levulinic acid production from glucose. Micropor Mesopor Mater 171, 14–23 (2013)

    Article  Google Scholar 

  74. Efremov, A., Pervyshina, G., Kuznetsov, B.: Production of levulinic acid from wood raw material in the presence of sulfuric acid and its salts. Chem. Nat. Compd. 34(2), 182–185 (1998)

    Article  Google Scholar 

  75. Seri, K.-I., Sakaki, T., Shibata, M., Inoue, Y., Ishida, H.: Lanthanum (III)-catalyzed degradation of cellulose at 250 C. Biores. Technol. 81(3), 257–260 (2002)

    Article  Google Scholar 

  76. Qi, X., Smith, R.L., Fang, Z. Production of versatile platform chemical 5-hydroxymethylfurfural from biomass in ionic liquids. In Production of Biofuels and Chemicals with Ionic Liquids. Springer, pp. 223–254 (2014).

  77. Zuo, Y., Zhang, Y., Fu, Y.: Catalytic conversion of cellulose into levulinic acid by a sulfonated chloromethyl polystyrene solid acid catalyst. ChemCatChem 6(3), 753–757 (2014)

    Article  Google Scholar 

  78. Lin, H., Strull, J., Liu, Y., Karmiol, Z., Plank, K., Miller, G., Guo, Z., Yang, L.: High yield production of levulinic acid by catalytic partial oxidation of cellulose in aqueous media. Energy Environ. Sci. 5(12), 9773–9777 (2012)

    Article  Google Scholar 

  79. Joshi, S.S., Zodge, A.D., Pandare, K.V., Kulkarni, B.D.: Efficient conversion of cellulose to levulinic acid by hydrothermal treatment using zirconium dioxide as a recyclable solid acid catalyst. Ind. Eng. Chem. Res. 53(49), 18796–18805 (2014)

    Article  Google Scholar 

  80. Choudhary, V., Mushrif, S.H., Ho, C., Anderko, A., Nikolakis, V., Marinkovic, N.S., Frenkel, A.I., Sandler, S.I., Vlachos, D.G.: Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl) furfural and levulinic acid in aqueous media. J. Am. Chem. Soc. 135(10), 3997–4006 (2013)

    Article  Google Scholar 

  81. Yang, F., Fu, J., Mo, J., Lu, X.: Synergy of Lewis and Brønsted acids on catalytic hydrothermal decomposition of hexose to levulinic acid. Energy Fuels 27(11), 6973–6978 (2013)

    Article  Google Scholar 

  82. Fu, J., Yang, F., Mo, J., Zhuang, J., Lu, X.: Catalytic decomposition of glucose to levulinic acid by synergy of organic Lewis acid and Brønsted acid in water. BioResources 10(1), 1346–1356 (2015)

    Article  Google Scholar 

  83. Shen, Y., Sun, J.-K., Yi, Y.-X., Wang, B., Xu, F., Sun, R.-C.: One-pot synthesis of levulinic acid from cellulose in ionic liquids. Biores. Technol. 192, 812–816 (2015)

    Article  Google Scholar 

  84. Hallet, J. https://www3.imperial.ac.uk/people/j.halett

  85. Cole, A.C., Jensen, J.L., Ntai, I., Tran, K.L.T., Weaver, K.J., Forbes, D.C., Davis, J.H.: Novel Brønsted acidic ionic liquids and their use as dual solvent−catalysts. J. Am. Chem. Soc. 124(21), 5962–5963 (2002)

    Article  Google Scholar 

  86. Marsh, K.N., Boxall, J.A., Lichtenthaler, R.: Room temperature ionic liquids and their mixtures—A review. Fluid Phase Equilib. 219(1), 93–98 (2004)

    Article  Google Scholar 

  87. Jarosik, A., Krajewski, S.R., Lewandowski, A., Radzimski, P.: Conductivity of ionic liquids in mixtures. J. Mol. Liq. 123(1), 43–50 (2006)

    Article  Google Scholar 

  88. Bubalo, M.C., Radošević, K., Redovniković, I.R., Slivac, I., Srček, V.G.: Toxicity mechanisms of ionic liquids. Arh. Hig. Rada Toksikol. 68(3), 171–179 (2017)

    Article  Google Scholar 

  89. Bubalo, M.C., Radošević, K., Redovniković, I.R., Halambek, J., Srček, V.G.: A brief overview of the potential environmental hazards of ionic liquids. Ecotoxicol. Environ. Saf. 99, 1–12 (2014)

    Article  Google Scholar 

  90. Egorova, K.S., Ananikov, V.P.: Toxicity of ionic liquids: eco (cyto) activity as complicated, but unavoidable parameter for task-specific optimization. Chemsuschem 7(2), 336–360 (2014)

    Article  Google Scholar 

  91. Kudłak, B., Owczarek, K., Namieśnik, J.: Selected issues related to the toxicity of ionic liquids and deep eutectic solvents—A review. Environ. Sci. Pollut. Res. 22(16), 11975–11992 (2015)

    Article  Google Scholar 

  92. Egorova, K.S., Gordeev, E.G., Ananikov, V.P.: Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem. Rev. 117(10), 7132–7189 (2017)

    Article  Google Scholar 

  93. Ren, H., Zhou, Y., Liu, L.: Selective conversion of cellulose to levulinic acid via microwave-assisted synthesis in ionic liquids. Biores. Technol. 129, 616–619 (2013)

    Article  Google Scholar 

  94. Alipour, S., Omidvarborna, H.: Enzymatic and catalytic hybrid method for levulinic acid synthesis from biomass sugars. J. Clean. Prod. 143, 490–496 (2017)

    Article  Google Scholar 

  95. Ramli, N.A.S., Amin, N.A.S.: A new functionalized ionic liquid for efficient glucose conversion to 5-hydroxymethyl furfural and levulinic acid. J. Mol. Catal. A: Chem. 407, 113–121 (2015)

    Article  Google Scholar 

  96. Li, K., Bai, L., Amaniampong, P.N., Jia, X., Lee, J.M., Yang, Y.: One-pot transformation of cellobiose to formic acid and levulinic acid over ionic-liquid-based polyoxometalate hybrids. Chemsuschem 7(9), 2670–2677 (2014)

    Article  Google Scholar 

  97. Sun, Z., Cheng, M., Li, H., Shi, T., Yuan, M., Wang, X., Jiang, Z.: One-pot depolymerization of cellulose into glucose and levulinic acid by heteropolyacid ionic liquid catalysis. RSC Adv. 2(24), 9058–9065 (2012)

    Article  Google Scholar 

  98. Mthembu, L.D. Production of levulinic acid from sugarcane bagasse (2016).

  99. Ramli, N.A.S., Amin, N.A.S.: Catalytic hydrolysis of cellulose and oil palm biomass in ionic liquid to reducing sugar for levulinic acid production. Fuel Process. Technol. 128, 490–498 (2014)

    Article  Google Scholar 

  100. Fu, J., Sheng, D., Lu, X.: Hydrogenation of levulinic acid over nickel catalysts supported on aluminum oxide to prepare γ-valerolactone. Catalysts 6(1), 6 (2016)

    Article  Google Scholar 

  101. Mukherjee, A., Dumont, M.-J., Raghavan, V.: Sustainable production of hydroxymethylfurfural and levulinic acid: Challenges and opportunities. Biomass Bioenerg. 72, 143–183 (2015)

    Article  Google Scholar 

  102. Tong, X., Li, Y.: Efficient and selective dehydration of fructose to 5-hydroxymethylfurfural catalyzed by brønsted-acidic ionic liquids. Chemsuschem 3(3), 350–355 (2010)

    Article  Google Scholar 

  103. Qu, Y., Huang, C., Zhang, J., Chen, B.: Efficient dehydration of fructose to 5-hydroxymethylfurfural catalyzed by a recyclable sulfonated organic heteropolyacid salt. Biores. Technol. 106, 170–172 (2012)

    Article  Google Scholar 

  104. Shimizu, K.-I., Uozumi, R., Satsuma, A.: Enhanced production of hydroxymethylfurfural from fructose with solid acid catalysts by simple water removal methods. Catal. Commun. 10(14), 1849–1853 (2009)

    Article  Google Scholar 

  105. Di Bucchianico, D.D.M., Buvat, J.-C., Mignot, M., Moreno, V.C., Leveneur, S.: Role of solvent the production of butyl levulinate from fructose. Fuel 318, 123703 (2022)

    Article  Google Scholar 

  106. Alonso, D.M., Gallo, J.M.R., Mellmer, M.A., Wettstein, S.G., Dumesic, J.A.: Direct conversion of cellulose to levulinic acid and gamma-valerolactone using solid acid catalysts. Catal. Sci. Technol. 3(4), 927–931 (2013)

    Article  Google Scholar 

  107. Timokhin, B.V., Baransky, V.A., Eliseeva, G.D.: Levulinic acid in organic synthesis. Russ. Chem. Rev. 68(1), 73–84 (1999)

    Article  Google Scholar 

  108. Wettstein, S.G., Alonso, D.M., Chong, Y., Dumesic, J.A.: Production of levulinic acid and gamma-valerolactone (GVL) from cellulose using GVL as a solvent in biphasic systems. Energy Environ. Sci. 5(8), 8199–8203 (2012)

    Article  Google Scholar 

  109. Liu, F., Sivoththaman, S., Tan, Z. Solvent extraction of 5-HMF from simulated hydrothermal conversion product. Sustain. Environ. Res. 24 (2) (2014).

  110. Chheda, J.N., Román-Leshkov, Y., Dumesic, J.A.: Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono-and poly-saccharides. Green Chem. 9(4), 342–350 (2007)

    Article  Google Scholar 

  111. Gürbüz, E.I., Wettstein, S.G., Dumesic, J.A.: Conversion of hemicellulose to furfural and levulinic acid using biphasic reactors with alkylphenol solvents. Chemsuschem 5(2), 383–387 (2012)

    Article  Google Scholar 

  112. Bicker, M., Hirth, J., Vogel, H.: Dehydration of fructose to 5-hydroxymethylfurfural in sub-and supercritical acetone. Green Chem. 5(2), 280–284 (2003)

    Article  Google Scholar 

  113. Sangarunlert, W., Piumsomboon, P., Ngamprasertsith, S.: Furfural production by acid hydrolysis and supercritical carbon dioxide extraction from rice husk. Korean J. Chem. Eng. 24(6), 936–941 (2007)

    Article  Google Scholar 

  114. Fu, J., Xu, X., Lu, X., Lu, X.: Hydrothermal decomposition of carbohydrates to levulinic acid with catalysis by ionic liquids. Ind. Eng. Chem. Res. 55(42), 11044–11051 (2016)

    Article  Google Scholar 

  115. Pileidis, F.D., Titirici, M.-M.: Levulinic acid biorefineries: New challenges for efficient utilization of biomass. Chemsuschem (2016). https://doi.org/10.1002/chin.201621274

    Article  Google Scholar 

  116. Chaudhari, C., Shiraishi, M., Nishida, Y., Sato, K., Nagaoka, K.: One-pot synthesis of pyrrolidones from levulinic acid and amines/nitroarenes/nitriles over the Ir-PVP catalyst. Green Chem. 22(22), 7760–7764 (2020)

    Article  Google Scholar 

  117. Liu, H.-F., Zeng, F.-X., Deng, L., Liao, B., Pang, H., Guo, Q.-X.: Brønsted acidic ionic liquids catalyze the high-yield production of diphenolic acid/esters from renewable levulinic acid. Green Chem. 15(1), 81–84 (2013)

    Article  Google Scholar 

  118. Guo, Y., Li, K., Clark, J.H.: The synthesis of diphenolic acid using the periodic mesoporous H 3 PW 12 O 40-silica composite catalysed reaction of levulinic acid. Green Chem. 9(8), 839–841 (2007)

    Article  Google Scholar 

  119. Shen, Y., Sun, J., Wang, B., Xu, F., Sun, R.: Catalytic synthesis of diphenolic acid from levulinic acid over bronsted acidic ionic liquids. BioResources 9(2), 3264–3275 (2014)

    Article  Google Scholar 

  120. Li, W., Xie, J.-H., Lin, H., Zhou, Q.-L.: Highly efficient hydrogenation of biomass-derived levulinic acid to γ-valerolactone catalyzed by iridium pincer complexes. Green Chem. 14(9), 2388–2390 (2012)

    Article  Google Scholar 

  121. Ortiz-Cervantes, C., García, J.J.: Hydrogenation of levulinic acid to γ-valerolactone using ruthenium nanoparticles. Inorg. Chim. Acta 397, 124–128 (2013)

    Article  Google Scholar 

  122. Rodiansono, R., Astuti, M.D., Ghofur, A., Sembiring, K.C.: Catalytic hydrogenation of levulinic acid in water into g-valerolactone over bulk structure of inexpensive intermetallic Ni-Sn alloy catalysts. Bull. Chem. React. Eng. Catal. 10(2), 192 (2015)

    Article  Google Scholar 

  123. Pileidis, F.D., Tabassum, M., Coutts, S., Titirici, M.-M.: Esterification of levulinic acid into ethyl levulinate catalysed by sulfonated hydrothermal carbons. Chin. J. Catal. 35(6), 929–936 (2014)

    Article  Google Scholar 

  124. Saravanamurugan, S., Riisager, A.: Solid acid catalysed formation of ethyl levulinate and ethyl glucopyranoside from mono-and disaccharides. Catal. Commun. 17, 71–75 (2012)

    Article  Google Scholar 

  125. Yan, K., Wu, G., Wen, J., Chen, A.: One-step synthesis of mesoporous H4SiW12O40-SiO2 catalysts for the production of methyl and ethyl levulinate biodiesel. Catal. Commun. 34, 58–63 (2013)

    Article  Google Scholar 

  126. Chen, J., Zhao, G., Chen, L.: Efficient production of 5-hydroxymethylfurfural and alkyl levulinate from biomass carbohydrate using ionic liquid-based polyoxometalate salts. RSC Adv. 4(8), 4194–4202 (2014)

    Article  Google Scholar 

  127. Weina, Z., Chang, C., Chen, M., Fengguang, D.: Kinetics of glucose ethanolysis catalyzed by extremely low sulfuric acid in ethanol medium. Chin. J. Chem. Eng. 22(2), 238–242 (2014)

    Article  Google Scholar 

  128. Zhao, S., Xu, G., Chang, J., Chang, C., Bai, J., Fang, S., Liu, Z.: Direct production of ethyl levulinate from carbohydrates catalyzed by H-ZSM-5 supported phosphotungstic acid. BioResources 10(2), 2223–2234 (2015)

    Article  Google Scholar 

  129. Fernandes, D., Rocha, A., Mai, E., Mota, C.J., Da Silva, V.T.: Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts. Appl. Catal. A 425, 199–204 (2012)

    Article  Google Scholar 

  130. Li, Z., Wnetrzak, R., Kwapinski, W., Leahy, J.J.: Synthesis and characterization of sulfated TiO2 nanorods and ZrO2/TiO2 nanocomposites for the esterification of biobased organic acid. ACS Appl. Mater. Interfaces. 4(9), 4499–4505 (2012)

    Article  Google Scholar 

  131. Nandiwale, K.Y., Sonar, S.K., Niphadkar, P.S., Joshi, P.N., Deshpande, S.S., Patil, V.S., Bokade, V.V.: Catalytic upgrading of renewable levulinic acid to ethyl levulinate biodiesel using dodecatungstophosphoric acid supported on desilicated H-ZSM-5 as catalyst. Appl. Catal. A 460, 90–98 (2013)

    Article  Google Scholar 

  132. Cirujano, F., Corma, A., Xamena, FXi.: Conversion of levulinic acid into chemicals: Synthesis of biomass derived levulinate esters over Zr-containing MOFs. Chem. Eng. Sci. 124, 52–60 (2015)

    Article  Google Scholar 

  133. Hayes, D.J., Fitzpatrick, S., Hayes, M.H., Ross, J.R.: The biofine process–production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks. Biorefineries-Industrial Processes Product 1, 139–164 (2006)

    Google Scholar 

  134. Haverty, D., Dussan, K., Piterina, A.V., Girisuta, B., Hayes, D., Leahy, J., Hayes, M. Levulinic acid production from lignocellulose biomass: Comparison of the DIBANET proposed design with the Biofine process for the acid hydrolysis route to Levulinic Acid. https://dibanet.geonardo.com/library/networking_day_2012/presentations/dibanet_donncha_haverty_levulinic_acid_production.pdf (accessed 20 January 2019).

  135. Hayes, D. Report on Optimal Use of DIBANET Feedstocks and Technologies. EU’s Seventh Framework Programme (2013).

  136. Girisuta, B., Danon, B., Manurung, R., Janssen, L., Heeres, H.: Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid. Biores. Technol. 99(17), 8367–8375 (2008)

    Article  Google Scholar 

  137. Kang, S., Yu, J.: Effect of methanol on formation of levulinates from cellulosic biomass. Ind. Eng. Chem. Res. 54(46), 11552–11559 (2015)

    Article  Google Scholar 

  138. Angellinnov, F., Yusuf, H., Rahayu, D., Krisnandi, Y.: Conversion of rice husks cellulose to levulinic acid on hierarchical Mn3O4/ZSM-5 catalyst from natural aluminosilicate. AIP Conf. Proc. 2243(1), 020001 (2020)

    Article  Google Scholar 

  139. Bevilaqua, D.B., Rambo, M.K., Rizzetti, T.M., Cardoso, A.L., Martins, A.F.: Cleaner production: Levulinic acid from rice husks. J. Clean. Prod. 47, 96–101 (2013)

    Article  Google Scholar 

  140. Kang, M., Kim, S.W., Kim, J.-W., Kim, T.H., Kim, J.S.: Optimization of levulinic acid production from Gelidium amansii. Renewable Energy 54, 173–179 (2013)

    Article  Google Scholar 

  141. Galletti, A.M.R., Antonetti, C., Ribechini, E., Colombini, M.P., Di Nasso, NNo., Bonari, E.: From giant reed to levulinic acid and gamma-valerolactone: A high yield catalytic route to valeric biofuels. Appl. Energy 102, 157–162 (2013)

    Article  Google Scholar 

  142. Chen, H., Yu, B., Jin, S.: Production of levulinic acid from steam exploded rice straw via solid superacid, S2O82-/ZrO2–SiO2–Sm2O3. Biores. Technol. 102(3), 3568–3570 (2011)

    Article  Google Scholar 

  143. Cunshan, Z., Xiaojie, Y., Haile, M., Ronghai, H., Vittayapadung, S.: Optimization on the conversion of bamboo shoot shell to levulinic acid with environmentally benign acidic ionic liquid and response surface analysis. Chin. J. Chem. Eng. 21(5), 544–550 (2013)

    Article  Google Scholar 

  144. Khan, A.S., Man, Z., Bustam, M.A., Nasrullah, A., Ullah, Z., Sarwono, A., Shah, F.U., Muhammad, N.: Efficient conversion of lignocellulosic biomass to levulinic acid using acidic ionic liquids. Carbohyd. Polym. 181, 208–214 (2018)

    Article  Google Scholar 

  145. Mascal, M., Nikitin, E.B.: Dramatic advancements in the saccharide to 5-(chloromethyl) furfural conversion reaction. Chemsuschem 2(9), 859–861 (2009)

    Article  Google Scholar 

  146. Zhi, Z., Li, N., Qiao, Y., Zheng, X., Wang, H., Lu, X.: Kinetic study of levulinic acid production from corn stalk at relatively high temperature using FeCl3 as catalyst: A simplified model evaluated. Ind. Crops Prod. 76, 672–680 (2015)

    Article  Google Scholar 

  147. Hartono, C.D., Marlie, K.J., Putro, J.N., Soetardjo, F.E., Ju, Y.H., Sirodj, D.A.N., Ismadji, S.: Levulinic acid from corncob by subcritical water process. Int. J. Ind. Chem. 7(4), 401–409 (2016)

    Article  Google Scholar 

  148. Fang, Q., Hanna, M.A.: Experimental studies for levulinic acid production from whole kernel grain sorghum. Biores. Technol. 81(3), 187–192 (2002)

    Article  Google Scholar 

  149. Chang, C., Xiaojian, M., Peilin, C.: Kinetic studies on wheat straw hydrolysis to levulinic acid. Chin. J. Chem. Eng. 17(5), 835–839 (2009)

    Article  Google Scholar 

  150. Carlson, L.J. United States patent. In Office USPaT. United states of America: Rayonier Incorporated, 1962.

  151. Tyrlik, S.K., Szerszen, D., Kurzak, B., Bal, K. Concentrated water solution of salts as solvents for reactions of carbohydrates. Part 1: reactions of glucose promoted by concentrated solutions of alkaline and alkaline earth metal salts. Starch-Staerke (Germany) (1995).

  152. Girisuta, B., Janssen, L., Heeres, H.: Green chemicals: A kinetic study on the conversion of glucose to levulinic acid. Chem. Eng. Res. Des. 84(5), 339–349 (2006)

    Article  Google Scholar 

  153. Heeres, H., Handana, R., Chunai, D., Rasrendra, C.B., Girisuta, B., Heeres, H.J.: Combined dehydration/(transfer)-hydrogenation of C6-sugars (D-glucose and D-fructose) to γ-valerolactone using ruthenium catalysts. Green Chem. 11(8), 1247–1255 (2009)

    Article  Google Scholar 

  154. Farone, W.A., Cuzens, J.E. United States of America (2000).

  155. B. Girisuta, Levulinic acid from lignocellulosic biomass. University Library Groningen [Host], (2007).

  156. Shen, J., Wyman, C.E.: Hydrochloric acid-catalyzed levulinic acid formation from cellulose: Data and kinetic model to maximize yields. AIChE J. 58(1), 236–246 (2012)

    Article  Google Scholar 

  157. Suacharoen, S., Tungasmita, D.N.: Hydrothermolysis of carbohydrates to levulinic acid using metal supported on porous aluminosilicate. J. Chem. Technol. Biotechnol. 88(8), 1538–1544 (2013)

    Article  Google Scholar 

  158. Lourvanij, K.: Partial dehydration of glucose to oxygenated hydrocarbons in molecular-sieving catalysts. Oregon State University (1995)

    Google Scholar 

  159. Ding, D., Wang, J., Xi, J., Liu, X., Lu, G., Wang, Y.: High-yield production of levulinic acid from cellulose and its upgrading to γ-valerolactone. Green Chem. 16(8), 3846–3853 (2014)

    Article  Google Scholar 

  160. Yang, H., Wang, L., Jia, L., Qiu, C., Pang, Q., Pan, X.: Selective decomposition of cellulose into glucose and levulinic acid over Fe-resin catalyst in NaCl solution under hydrothermal conditions. Ind. Eng. Chem. Res. 53(15), 6562–6568 (2014)

    Article  Google Scholar 

  161. Amarasekara, A.S., Wiredu, B.: Acidic ionic liquid catalyzed one-pot conversion of cellulose to ethyl levulinate and levulinic acid in ethanol-water solvent system. BioEnergy Res. 7(4), 1237–1243 (2014)

    Article  Google Scholar 

Download references

Funding

This study was supported by the L’Oréal-UNESCO Women in Science Sub-Saharan Africa Regional Fellowship, Durban University of Technology to Lethiwe D. Mthembu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lethiwe D. Mthembu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mthembu, L.D., Gupta, R. & Deenadayalu, N. Advances in Biomass-Based Levulinic Acid Production. Waste Biomass Valor 14, 1–22 (2023). https://doi.org/10.1007/s12649-022-01948-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01948-x

Keywords

Navigation