Skip to main content

Advertisement

Log in

Application of Molasses as an Eco-Innovative Approach Substitutes Mineral Nitrogen Fertilization and Enhances Sugar Beet Productivity

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Large quantities of byproducts are produced from beet sugar industry causing deleterious environmental pollution. This study aimed to evaluate the surface and foliar application of molasses and vinasses as an eco-innovative amendment and nutritional supplements on sugar beet yield and quality.

Methods

The yield and root juice quality of two sugar beet varieties were evaluated for two growing seasons under nine fertilization and soil amendment application treatments.

Results

Application of molasses to the soil has significantly promoted root yield, with the highest root yield resulting from the application of 360 L ha−1 of molasses to the soil. Likewise, the highest values of sucrose content, quality index (QZ)%, recoverable sugar (RS) % and recoverable sugar yield were produced from the application of 360 L ha−1 of molasses. Moreover, the lowest Na%, K% and α-amino N% values in both varieties resulted from the surface application of 360 L ha−1 molasses. Compared to the control treatment, applying 360 L ha−1 of molasses improved the available N, P and K as well as the organic matter, calcium and magnesium contents in the soil.

Conclusions

Beet sugar molasses could be applied to the soil surface as a soil amendment and a substitute for the application of inorganic nitrogen and phosphorus fertilizers. Molasses is a promising eco-friendly soil amendment that greatly enhances sugar beet productivity and biofortification by improving the physical and chemical properties of the soil.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data are included within the manuscript and its supplementary material.

References

  1. Qiu, Z., Egidi, E., Liu, H., Kaur, S., Singh, B.K.: New frontiers in agriculture productivity: optimised microbial inoculants and in situ microbiome engineering. Biotechnol. Adv. 37, 107371 (2019). https://doi.org/10.1016/j.biotechadv.2019.03.010

    Article  Google Scholar 

  2. Spiertz, J.H.J., Ewert, F.: Crop production and resource use to meet the growing demand for food, feed and fuel: opportunities and constraints. NJAS - Wageningen J Life Sci 56, 281–300 (2009). https://doi.org/10.1016/S1573-5214(09)80001-8

    Article  Google Scholar 

  3. Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R., Polasky, S.: Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002). https://doi.org/10.1038/nature01014

    Article  Google Scholar 

  4. Borlaug, N.: Fertilizer’s Role in World Food Production. The Fertilizer Institute, Washington DC (2008)

    Google Scholar 

  5. Schmitt, E., de Vries, W.: Potential benefits of using Hermetia illucens frass as a soil amendment on food production and for environmental impact reduction. Curr. Opin. Green Sustain. Chem. 25, 100335 (2020). https://doi.org/10.1016/j.cogsc.2020.03.005

    Article  Google Scholar 

  6. Sikora, J., Niemiec, M., Tabak, M., Gródek-Szostak, Z., Szeląg-Sikora, A., Kuboń, M., Komorowska, M.: Assessment of the efficiency of nitrogen slow-release fertilizers in integrated production of carrot depending on fertilization strategy. Sustainability 12, 1982 (2020). https://doi.org/10.3390/su12051982

    Article  Google Scholar 

  7. Stewart, W.M., Dibb, D.W., Johnston, A.E., Smyth, T.J.: The contribution of commercial fertilizer nutrients to food production. Agron. J. 97, 1–6 (2005). https://doi.org/10.2134/agronj2005.0001

    Article  Google Scholar 

  8. Mulvaney, R.L., Khan, S.A., Ellsworth, T.R.: Synthetic nitrogen fertilizers deplete soil nitrogen: a global dilemma for sustainable cereal production. J. Environ. Qual. 38(6), 2295–2314 (2009). https://doi.org/10.2134/jeq2008.0527

    Article  Google Scholar 

  9. Spiertz, J., Oenema, O.: Resource Use Efficiency and Management of Nutrients in Agricultural Systems. Tsinghua University Press and Springer, Peking (2005)

    Google Scholar 

  10. Bellarby, J., Foereid, B., Hastings, A.F.S.J., Smith, P.: Climate Impacts of Agriculture and Mitigation Potential. Cool Farming. Greenpeace International, Amsterdam (2008)

    Google Scholar 

  11. Brentrup, F., Pallière, C.: GHG emissions and energy efficiency in European nitrogen fertiliser production and use. In: Proceedings 639, International Fertiliser Society, New York (2008)

  12. Davis, J., Haglund, C.: Life Cycle Inventory (LCI) of Fertiliser Production. Fertiliser products used in Sweden and Western Europe (1999)

  13. Diacono, M., Rubino, P., Montemurro, F.: Precision nitrogen management of wheat. A review. Agron. Sustain. Dev. 33, 219–241 (2013). https://doi.org/10.1007/s13593-012-0111-z

    Article  Google Scholar 

  14. Schmidt Rivera, X.C., Bacenetti, J., Fusi, A., Niero, M.: The influence of fertiliser and pesticide emissions model on life cycle assessment of agricultural products: the case of Danish and Italian barley. Sci. Total Environ. 592, 745–757 (2017). https://doi.org/10.1016/j.scitotenv.2016.11.183

    Article  Google Scholar 

  15. Mosier, A., Syers, K.J.: Agriculture and the Nitrogen Cycle: Assessing the Impacts of Fertilizer Use on Food Production and the Environment. Island Press, Washington (2004)

    Google Scholar 

  16. Spiertz, H.: Food production, crops and sustainability: restoring confidence in science and technology. Curr. Opin. Environ. Sustain. 2, 439–443 (2010). https://doi.org/10.1016/j.cosust.2010.10.006

    Article  Google Scholar 

  17. Wang, Y., Zhu, Y., Zhang, S., Wang, Y.: What could promote farmers to replace chemical fertilizers with organic fertilizers? J. Clean. Prod. 199, 882–890 (2018). https://doi.org/10.1016/j.jclepro.2018.07.222

    Article  Google Scholar 

  18. Li, L., Wu, W., Giller, P., O’Halloran, J., Liang, L., Peng, P., Zhao, G.: Life cycle assessment of a highly diverse vegetable multi-cropping system in Fengqiu county, China. Sustainability 10, 983 (2018). https://doi.org/10.3390/su10040983

    Article  Google Scholar 

  19. Kazlauskas, M., Bručienė, I., Jasinskas, A., Šarauskis, E.: Comparative analysis of energy and GHG emissions using fixed and variable fertilization rates. Agronomy 11, 138 (2021). https://doi.org/10.3390/agronomy11010138

    Article  Google Scholar 

  20. Abou-Elwafa, S.F., Amin, A.E.-E.A., Eujayl, I.: Genetic diversity of sugar beet under heat stress and deficit irrigation. Agron. J. 112, 3579–3590 (2020). https://doi.org/10.1002/agj2.20356

    Article  Google Scholar 

  21. Balakrishnan, A., Selvakumar, T.: Evaluation of suitable tropical sugarbeet hybrids with optimum time of sowing. Sugar Tech 11, 65–68 (2009). https://doi.org/10.1007/s12355-009-0011-y

    Article  Google Scholar 

  22. Abo-Elwafa, S.F., Abdel-Rahim, H.M., Abou-Salama, A.M., Team, E.A.: Sugar beet floral induction and fertility: effect of vernalization and day-length extension. Sugar Tech 8, 281–287 (2006). https://doi.org/10.1007/BF02943569

    Article  Google Scholar 

  23. Galal, A., El-Noury, M., Essa, M., Abou-El-Yazied, A., Abou-Elwafa S.F.: Response of sugar beet varieties to plant geometrical distribution. Egyptian Sugar J. 18(0), 1–15 (2022). https://doi.org/10.21608/esugj.2022.120152.1003

  24. Galal, A., El-Noury, M., Essa, M., Abou-El-Yazied, A., Abou-Elwafa S.F.: Effect of algae extract foliar application and inter-row planting distances on the yield and quality of sugar beet. Egyptian Sugar J. 18(0), 16–31 (2022). https://doi.org/10.21608/ESUGJ.2022.125012.1004

  25. Cha-um, S., Kirdmanee, C.: Remediation of salt-affected soil by the addition of organic matter: an investigation into improving glutinous rice productivity. Scientia Agricola 68, 406–410 (2011). https://doi.org/10.1590/S0103-90162011000400003

    Article  Google Scholar 

  26. Ding, Z., Kheir, A.M.S., Ali, M.G.M., Ali, O.A.M., Abdelaal, A.I.N., Lin, X.E., Zhou, Z., Wang, B., Liu, B., He, Z.: The integrated effect of salinity, organic amendments, phosphorus fertilizers, and deficit irrigation on soil properties, phosphorus fractionation and wheat productivity. Sci. Rep. 10, 2736 (2020). https://doi.org/10.1038/s41598-020-59650-8

    Article  Google Scholar 

  27. Jesus, J.M., Danko, A.S., Fiúza, A., Borges, M.T.: Phytoremediation of salt-affected soils: a review of processes, applicability, and the impact of climate change. Environ. Sci. Pollut. Res. 22, 6511–6525 (2015). https://doi.org/10.1007/s11356-015-4205-4

    Article  Google Scholar 

  28. El-Tokhy, F.K., Tantawy, A.S., El-Shinawy, M.Z., Hadid, A.F.A.E.: Effect of sugar beet molass and Fe-EDHHA on tomato plants grown under saline water irrigation conditions. Arab Univ. J. Agric. Sci. 26, 2297 (2019). https://doi.org/10.21608/AJS.2018.35344

    Article  Google Scholar 

  29. Alotaibi, F., Bamagoos, A.A., Ismaeil, F.M., Zhang, W., Abou-Elwafa, S.F.: Application of beet sugar byproducts improves sugar beet biofortification in saline soils and reduces sugar losses in beet sugar processing. Environ. Sci. Pollut. Res. 28, 30303–30311 (2021). https://doi.org/10.1007/s11356-021-12935-5

    Article  Google Scholar 

  30. Tantawy, A.S.: Effect of Some Mineral and Organic Compounds on Salinity Tolerance of Tomato. Horticulture Department Al-Azhar University, Cairo (2007)

    Google Scholar 

  31. Aljabri, M., Alharbi, S., Al-Qthanin, R.N., Ismaeil, F.M., Chen, J., Abou-Elwafa, S.F.: Recycling of beet sugar byproducts and wastes enhances sugar beet productivity and salt redistribution in saline soils. Environ. Sci. Pollut. Res. 28, 45745–45755 (2021). https://doi.org/10.1007/s11356-021-13860-3

    Article  Google Scholar 

  32. Amer, M.M.: Effect of gypsum, sugar factory lime and molasses on some soil proprieties and productivity of sugar beet (Beta vulgaris L.) grown on saline-sodic soils of Nile North Delta. J. Soil Sci. Agric. Eng. 6, 20 (2015). https://doi.org/10.21608/JSSAE.2015.42170

    Article  Google Scholar 

  33. Burt, R.: Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report No. 42, (4.0, V., Ed.). United States Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center, USA (2004)

  34. Olsen, S.R.: Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate (1954)

  35. Jackson, M.L.: Soil Chemical Analysis. Prentice-Hall Inc, New Delhi (1973)

    Google Scholar 

  36. Rahman, K.M.A., Zhang, D.: Effects of fertilizer broadcasting on the excessive use of inorganic fertilizers and environmental sustainability. Sustainability 10, 759 (2018). https://doi.org/10.3390/su10030759

    Article  Google Scholar 

  37. Pretty, J.: Agricultural sustainability: concepts, principles and evidence. Philos. Trans. R. Soc. B 363, 447–465 (2008). https://doi.org/10.1098/rstb.2007.2163

    Article  Google Scholar 

  38. Rennings, K.: Redefining innovation - eco-innovation research and the contribution from ecological economics. Ecol. Econ. 32, 319–332 (2000). https://doi.org/10.1016/S0921-8009(99)00112-3

    Article  Google Scholar 

  39. Prado, R.D.M., Caione, G., Campos, C.N.S.: filter cake and vinasse as fertilizers contributing to conservation agriculture. Appl. Environ. Soil Sci. 2013, 1–8 (2013). https://doi.org/10.1155/2013/581984

    Article  Google Scholar 

  40. Abejehu, G.: Effect of filter cake and nitrogen fertilizer (Urea) on yield of sugarcane at Wonji-Shoa Sugar Estate Scholarly. J. Agric. Sci. 5, 147–153 (2015)

    Google Scholar 

  41. Moda, L.R., Prado, R.D.M., Caione, G., Campos, C.N.S., Silva, E.C.D., Flores, R.: Effect of sources and rates of phosphorus associated with filter cake on sugarcane nutrition and yield. Aust. J. Crop Sci. 9, 477–485 (2015)

    Google Scholar 

  42. Honma, T., Kaneko, A., Ohba, H., Ohyama, T.: Effect of application of molasses to paddy soil on the concentration of cadmium and arsenic in rice grain. Soil Sci. Plant Nutr. 58, 255–260 (2012). https://doi.org/10.1080/00380768.2012.670809

    Article  Google Scholar 

  43. Miller, D.J., Smith, G.L.: Lüttgau & Niedergerke; the classic study of calcium–sodium antagonism half a century on. J. Physiol. 588, 23–25 (2010). https://doi.org/10.1113/jphysiol.2009.184242

    Article  Google Scholar 

  44. Sowiński, P.: Transport of photoassimilates in plants under unfavourable environmental conditions. Acta Physiol. Plant. 21, 75 (1999). https://doi.org/10.1007/s11738-999-0030-z

    Article  Google Scholar 

  45. Lemoine, R., La Camera, S., Atanassova, R., Dédaldéchamp, F., Allario, T., Pourtau, N., Bonnemain, J.-L., Laloi, M., Coutos-Thévenot, P., Maurousset, L., Faucher, M., Girousse, C., Lemonnier, P., Parrilla, J., Durand, M.: Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci. (2013). https://doi.org/10.3389/fpls.2013.00272

    Article  Google Scholar 

  46. Hosseini, S.A., Réthoré, E., Pluchon, S., Ali, N., Billiot, B., Yvin, J.C.: Calcium application enhances drought stress tolerance in sugar beet and promotes plant biomass and beetroot sucrose concentration. Int. J. Mol. Sci. 20, 3777 (2019). https://doi.org/10.3390/ijms20153777

    Article  Google Scholar 

  47. Koch, M., Busse, M., Naumann, M., Jákli, B., Smit, I., Cakmak, I., Hermans, C., Pawelzik, E.: Differential effects of varied potassium and magnesium nutrition on production and partitioning of photoassimilates in potato plants. Physiol. Plant. 166, 921–935 (2019). https://doi.org/10.1111/ppl.12846

    Article  Google Scholar 

  48. Wakeel, A.: Potassium–sodium interactions in soil and plant under saline-sodic conditions. J. Plant Nutr. Soil Sci. 176, 344–354 (2013)

    Article  Google Scholar 

  49. Shaheen, S.M., Shams, M.S., Khalifa, M.R., El-Dali, M.A., Rinklebe, J.: Various soil amendments and environmental wastes affect the (im)mobilization and phytoavailability of potentially toxic elements in a sewage effluent irrigated sandy soil. Ecotoxicol. Environ. Saf. 142, 375–387 (2017). https://doi.org/10.1111/ppl.12846

    Article  Google Scholar 

  50. David, F.: Salt Accumulation Processes. In 58105, North Dakota state University, Fargo ND (2007)

  51. Hasanuzzaman, M., Alam, M.M., Rahman, A., Hasanuzzaman, M., Nahar, K., Fujita, M.: Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. BioMed. Res. Int. 2014, 757219 (2014). https://doi.org/10.1155/2014/757219

    Article  Google Scholar 

  52. Bhuiyan, M.S.I., Raman, A., Hodgkins, D.S., Mitchell, D., Nicol, H.I.: Salt accumulation and physiology of naturally occurring grasses in saline soils in Australia. Pedosphere 25, 501–511 (2015). https://doi.org/10.1016/S1002-0160(15)30031-X

    Article  Google Scholar 

  53. Kemi Idowu, M., Adote Aduayi, E.: Sodium-potassium interaction on growth, yield and quality of tomato in ultisol. J. Plant Interact. 2, 263–271 (2007). https://doi.org/10.1080/17429140701713803

    Article  Google Scholar 

  54. Momayezi, M.R., Rahman, Z.A., Mosa, M.H., Ismail, M.R.: Effect of chloride and sulfate salinity on nutrient uptake in Iranian rice (Oryza sativa L.). In: Proceedings of the 19th World Congress of Soil Science. Soil Solutions for a Changing World, Brisbane, Australia (2010)

  55. Hussain, Z., Khattak, R.A., Irshad, M., Eneji, A.E.: Ameliorative effect of potassium sulphate on the growth and chemical composition of wheat (Triticum aestivum L.) in salt-affected soils. J. Soil Sci. Plant Nutr. 13, 401–415 (2013). https://doi.org/10.4067/S0718-95162013005000032

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Taif University Research Supporting Project number (TURSP-2020/315), Taif University, Taif, Saudi Arabia, for providing the financial support and research facilities.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

SFAE conceived the study, analyzed the data, and wrote the manuscript. SAD, MSA, MAA and SA helped in data analysis and presentation. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Salah F. Abou-Elwafa.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Competing interests

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Dhumri, S.A., Al Mosallam, M.S., Zhang, W. et al. Application of Molasses as an Eco-Innovative Approach Substitutes Mineral Nitrogen Fertilization and Enhances Sugar Beet Productivity. Waste Biomass Valor 14, 287–296 (2023). https://doi.org/10.1007/s12649-022-01873-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01873-z

Keywords

Navigation