Skip to main content
Log in

Enhanced Extraction of Flavonoids from Licorice Residues by Solid-State Mixed Fermentation

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Industrial and agricultural processing of licorice has produed a considerable quantity of residues, which are normally discarded randomly or treated by landfill. The residual active components in licorice residues including flavonoids were wasted. More seriously, the obstruction of lignocellulose in the residues has brought a huge challenge for efficient extraction of remaining flavonoids. Here, solid-state fermentation was thus developed to treat licorice residues for enhancing the flavonoids extraction.

Methods

Focusing on the production of cell-wall degrading enzymes including pectinase, exocellulase and laccase, Lichtheimia ramose and white rot fungus were selected for solid-state mixed fermentation. The extraction of flavonoids was enhanced through optimizing the condition of solid-state mixed fermentation.

Results

Under the inoculation ratio 1:1 of Lichtheimia ramose and white rot fungus with an inoculum concentration 10%, moisture content of 50% (w/w), nitrogen source content 20% (urea: NH4NO3 1:2), optimal activities of exocellulase, pectinase and laccase were obtained, which were 60.31 U/g, 65.99 U/g and 62.30 U/g respectively. The FT-IR confirmed the effective removal of lignin and hemicellulose. The SEM revealed a rough morphology with cracks and appearance of ruffles in fermented licorice residues, implying the destruction of lignocellulose by fermentation. After mixed fermentation, three new flavonoids including glabrone, isoflavone and licochalcone A were detected and identified by UHPLC-Q-TOF–MS. The extracted liquiritigenin increased by 75% compared with unfermented licorice residues.

Conclusion

Mixed fermentation efficiently enhanced the release of flavonoids from licorice residues through destroying the compact structure of lignocellulose, demonstrating the application potential of solid-state fermentation technology in improving the extraction of active components from medicine residues.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Mukhopadhyay, M., Panja, P.: A novel process for extraction of natural sweetener from licorice (Glycyrrhiza glabra) roots. Sep. Purif. Technol. 63(3), 539–545 (2008). https://doi.org/10.1016/j.seppur.2008.06.013

    Article  Google Scholar 

  2. Gui, X., Wang, G., Hu, M., Yan, Y.: Combined fungal and mild acid pretreatment of Glycyrrhiza uralensis residue for enhancing enzymatic hydrolysis and oil production. BioResources 8(4), 5485–5499 (2013). https://doi.org/10.15376/biores.8.4.5485-5499

    Article  Google Scholar 

  3. Yang, N., Zhang, S., Yang, S., Guo, Z., Zhang, X., Zhao, Y.: The inhibition of alpha-glycosidase and protein tyrosine phosphatase 1B (PTP1B) activities by ginsenosides from Panax ginseng CA Meyer and simultaneous determination by HPLC-ELSD. J. Funct. Foods 23, 188–197 (2016). https://doi.org/10.1016/j.jff.2015.12.018

    Article  Google Scholar 

  4. Kamimura, N., Sakamoto, S., Mitsuda, N., Masai, E., Kajita, S.: Advances in microbial lignin degradation and its applications. Curr. Opin. Biotechnol. 56, 179–186 (2019). https://doi.org/10.1016/j.copbio.2018.11.011

    Article  Google Scholar 

  5. Goncalves, F.A., Ruiz, H.A., dos Santos, E.S., Teixeira, J.A., de Macedo, G.R.: Bioethanol production by Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis from delignified coconut fibre mature and lignin extraction according to biorefinery concept. Renew. Energy 94, 353–365 (2016). https://doi.org/10.1016/j.renene.2016.03.045

    Article  Google Scholar 

  6. Girio, F.M., Fonseca, C., Carvalheiro, F., Duarte, L.C., Marques, S., Bogel-Lukasik, R.: Hemicelluloses for fuel ethanol: a review. Biores. Technol. 101(13), 4775–4800 (2010). https://doi.org/10.1016/j.biortech.2010.01.088

    Article  Google Scholar 

  7. Hendriks, A.T.W.M., Zeeman, G.: Pretreatments to enhance the digestibility of lignocellulosic biomass. Biores. Technol. 100(1), 10–18 (2009). https://doi.org/10.1016/j.biortech.2008.05.027

    Article  Google Scholar 

  8. Chung, D., Pattathil, S., Biswal, A.K., Hahn, M.G., Mohnen, D., Westpheling, J.: Deletion of a gene cluster encoding pectin degrading enzymes in Caldicellulosiruptor bescii reveals an important role for pectin in plant biomass recalcitrance. Biotechnol. Biofuels (2014). https://doi.org/10.1186/s13068-014-0147-1

    Article  Google Scholar 

  9. C.d.O. Gorgulho Silva, E.X. FerreiraFilho, A review of holocellulase production using pretreated lignocellulosic substrates, Bioenergy Res. 10(2), 592–602. Doi: https://doi.org/10.1007/s12155-017-9815-x (2017)

  10. Rose, M., Palkovits, R.: Cellulose-based sustainable polymers: state of the art and future trends. Macromol. Rapid Commun. 32(17), 1299–1311 (2011). https://doi.org/10.1002/marc.201100230

    Article  Google Scholar 

  11. Javed, M.M., Zahoor, S., Shafaat, S., Mehmooda, I., Gul, A., Rasheed, H., Bukhari, S.A.I., Aftab, M.N., Ikram ul, H.: Wheat bran as a brown gold: nutritious value and its biotechnological applications. Afr. J. Microbiol. Res. 6(4), 724–733 (2012). https://doi.org/10.5897/ajmr11.035

    Article  Google Scholar 

  12. Zheng, J., Rehmann, L.: Extrusion pretreatment of lignocellulosic biomass: a review. Int. J. Mol. Sci. 15(10), 18967–18984 (2014). https://doi.org/10.3390/ijms151018967

    Article  Google Scholar 

  13. Ding, X., Yao, L., Hou, Y., Hou, Y., Wang, G., Fan, J., Qian, L.: Optimization of culture conditions during the solid-state fermentation of tea residue using mixed strains. Waste Biomass Valorization 11(12), 6667–6675 (2020). https://doi.org/10.1007/s12649-019-00930-4

    Article  Google Scholar 

  14. Wang, X., Li, X., Liu, B., Long, F., Wei, J., Zhang, Y., Cui, Y., Yuan, Y., Yue, T.: Comparison of chemical constituents of Eurotium cristatum-mediated pure and mixed fermentation in summer-autumn tea. Lwt Food Sci. Technol. (2021). https://doi.org/10.1016/j.lwt.2021.111132

    Article  Google Scholar 

  15. Sun, X., Liu, Z., Qu, Y., Li, X.: The effects of wheat bran composition on the production of biomass-hydrolyzing enzymes by Penicillium decumbens. Appl. Biochem. Biotechnol. 146(1–3), 119–128 (2008). https://doi.org/10.1007/s12010-007-8049-3

    Article  Google Scholar 

  16. Dhillon, G.S., Brar, S.K., Verma, M., Tyagi, R.D.: Recent advances in citric acid bio-production and recovery. Food Bioprocess Technol. 4(4), 505–529 (2011). https://doi.org/10.1007/s11947-010-0399-0

    Article  Google Scholar 

  17. Raghavarao, K., Ranganathan, T.V., Karanth, N.G.: Some engineering aspects of solid-state fermentation. Biochem. Eng. J. 13(2–3), 127–135 (2003). https://doi.org/10.1016/s1369-703x(02)00125-0

    Article  Google Scholar 

  18. Thomas, L., Larroche, C., Pandey, A.: Current developments in solid-state fermentation. Biochem. Eng. J. 81, 146–161 (2013). https://doi.org/10.1016/j.bej.2013.10.013

    Article  Google Scholar 

  19. Singhania, R.R., Patel, A.K., Soccol, C.R., Pandey, A.: Recent advances in solid-state fermentation. Biochem. Eng. J. 44(1), 13–18 (2009). https://doi.org/10.1016/j.bej.2008.10.019

    Article  Google Scholar 

  20. Mishra, V., Jana, A.K.: Sweet sorghum bagasse pretreatment by Coriolus versicolor in mesh tray bioreactor for selective delignification and improved saccharification. Waste Biomass Valorization 10(9), 2689–2702 (2019). https://doi.org/10.1007/s12649-018-0276-z

    Article  Google Scholar 

  21. Perdani, M.S., Margaretha, G., Sahlan, M., Hermansyah, H.: Solid state fermentation method for production of laccase enzyme with bagasse, cornstalk and rice husk as substrates for adrenaline biosensor. Energy Rep. 6, 336–340 (2020). https://doi.org/10.1016/j.egyr.2019.08.065

    Article  Google Scholar 

  22. Xie, J., Liu, S., Dong, R., Xie, J., Chen, Y., Peng, G., Liao, W., Xue, P., Feng, L., Yu, Q.: Bound Polyphenols from insoluble dietary fiber of defatted rice bran by solid-state fermentation with trichoderma viride: profile, activity, and release mechanism. J. Agric. Food Chem. 69(17), 5026–5039 (2021). https://doi.org/10.1021/acs.jafc.1c00752

    Article  Google Scholar 

  23. Wiberth, C.-C., Citlalli Casandra, A.-Z., Fan, Z., Gabriela, H.: Oxidative enzymes activity and hydrogen peroxide production in white-rot fungi and soil-borne micromycetes co-cultures. Ann. Microbiol. 69(2), 171–181 (2019). https://doi.org/10.1007/s13213-018-1413-4

    Article  Google Scholar 

  24. Serna, L.C., Cuesta, F.L.A.: Use of laccase-producing microorganisms in membrane systems for polluting agents removal: consideration and perspectives. Chil. J. Agric. Res. 68(4), 401–411 (2008). https://doi.org/10.4067/S0718-58392008000400010

    Article  Google Scholar 

  25. dos Reis, L., Hahn Schneider, W.D., Fontana, R.C., Camassola, M., Dillon, A.J.P.: Cellulase and xylanase expression in response to different pH levels of Penicillium echinulatum S1M29 medium. Bioenergy Res. 7(1), 60–67 (2014). https://doi.org/10.1007/s12155-013-9345-0

    Article  Google Scholar 

  26. Zhou, C., Ye, J., Xue, Y., Ma, Y.: Directed evolution and structural analysis of alkaline pectate lyase from the alkaliphilic Bacterium Bacillus sp strain N16–5 to improve its thermostability for efficient ramie degumming. Appl. Environ. Microbiol. 81(17), 5714–5723 (2015). https://doi.org/10.1128/aem.01017-15

    Article  Google Scholar 

  27. Karthik, N., Akanksha, K., Binod, P., Pandey, A.: Production, purification and properties of fungal chitinases-a review. Indian J. Exp. Biol. 52(11), 1025–1035 (2014)

    Google Scholar 

  28. Fenice, M., Leuba, J.L., Federici, F.: Chitinolytic enzyme activity of Penicillium janthinellum P9 in bench-top bioreactor. J. Ferment. Bioeng. 86(6), 620–623 (1998). https://doi.org/10.1016/s0922-338x(99)80020-8

    Article  Google Scholar 

  29. Yu, H., Guo, G., Zhang, X., Yan, K., Xu, C.: The effect of biological pretreatment with the selective white-rot fungus Echinodontium taxodii on enzymatic hydrolysis of softwoods and hardwoods. Biores. Technol. 100(21), 5170–5175 (2009). https://doi.org/10.1016/j.biortech.2009.05.049

    Article  Google Scholar 

  30. Kristensen, J.B., Thygesen, L.G., Felby, C., Jorgensen, H., Elder, T.: Cell-wall structural changes in wheat straw pretreated for bioethanol production. Biotechnol. Biofuels (2008). https://doi.org/10.1186/1754-6834-1-5

    Article  Google Scholar 

  31. Thomsen, M.H., Thygesen, A., Jorgensen, H., Larsen, J., Christensen, B.H., Thomsen, A.B.: Preliminary results on optimization of pilot scale pretreatment of wheat straw used in coproduction of bioethanol and electricity. Appl. Biochem. Biotechnol. 130(1–3), 448–460 (2006)

    Article  Google Scholar 

  32. Oliveira, S.D., de AraujoPadilha, C.E., Asevedo, E.A., Pimentel, V.C., de Araujo, F.R., de Macedo, G.R., dos Santos, E.S.: Utilization of agroindustrial residues for producing cellulases by Aspergillus fumigatus on semi-solid fermentation. J. Environ. Chem. Eng. 6(1), 937–944 (2018). https://doi.org/10.1016/j.jece.2017.12.038

    Article  Google Scholar 

  33. Inglesby, M.K., Gray, G.M., Wood, D.F., Gregorski, K.S., Robertson, R.G., Sabellano, G.P.: Surface characterization of untreated and solvent-extracted rice straw. Colloids Surf. B 43(2), 83–94 (2005). https://doi.org/10.1016/j.colsurfb.2005.03.014

    Article  Google Scholar 

  34. Singhania, R.R., Saini, R., Adsul, M., Saini, J.K., Mathur, A., Tuli, D.: An integrative process for bio-ethanol production employing SSF produced cellulase without extraction. Biochem. Eng. J. 102, 45–48 (2015). https://doi.org/10.1016/j.bej.2015.01.002

    Article  Google Scholar 

  35. Mo, M.H., Xu, C.K., Zhang, K.Q.: Effects of carbon and nitrogen sources, carbon-to-nitrogen ratio, and initial pH on the growth of nematophagous fungus Pochonia chlamydosporia in liquid culture. Mycopathologia 159(3), 381–387 (2005). https://doi.org/10.1007/s11046-004-5816-3

    Article  Google Scholar 

  36. Schneider, M., Zimmer, G.F., Cremonese, E.B., Schneider, R.D.C.D.S., Corbellini, V.A.: By-products from the biodiesel chain as a substrate to citric acid production by solid-state fermentation. Waste Manag. Res. 32(7), 653–660 (2014). https://doi.org/10.1177/0734242X14539788

    Article  Google Scholar 

  37. Aita, B.C., Spannemberg, S.S., Schmaltz, S., Zabot, G.L., Tres, M.V., Kuhn, R.C., Mazutti, M.A.: Production of cell-wall degrading enzymes by solid-state fermentation using agroindustrial residues as substrates. J. Environ. Chem. Eng. (2019). https://doi.org/10.1016/j.jece.2019.103193

    Article  Google Scholar 

  38. de Azevedo, A., Fornasier, F., Szarblewski, M.D.S., de Souza Schneider, R.D.C., Hoeltz, M., de Souza, D.: Life cycle assessment of bioethanol production from cattle manure. J. Clean. Prod. 162, 1021–1030 (2017). https://doi.org/10.1016/j.jclepro.2017.06.141.

  39. Dionisi, D., Anderson, J.A., Aulenta, F., McCue, A., Paton, G.: The potential of microbial processes for lignocellulosic biomass conversion to ethanol: a review. J. Chem. Technol. Biotechnol. 90(3), 366–383 (2015). https://doi.org/10.1002/jctb.4544

    Article  Google Scholar 

  40. Lu, J., Sun, C., Yang, K., Wang, K., Jiang, Y., Tusiime, R., Yang, Y., Fan, F., Sun, Z., Liu, Y., Zhang, H., Han, K., Yu, M.: Properties of polylactic acid reinforced by hydroxyapatite modified nanocellulose. Polymers 11(6), 1009 (2019). https://doi.org/10.3390/polym11061009

    Article  Google Scholar 

  41. Toushik, S.H., Lee, K.-T., Lee, J.-S., Kim, K.-S.: Functional applications of lignocellulolytic enzymes in the fruit and vegetable processing industries. J. Food Sci. 82(3), 585–593 (2017). https://doi.org/10.1111/1750-3841.13636

    Article  Google Scholar 

  42. Chen, X., Li, H., Sun, S., Cao, X., Sun, R.: Effect of hydrothermal pretreatment on the structural changes of alkaline ethanol lignin from wheat straw. Sci. Rep. (2016). https://doi.org/10.1038/srep39354

    Article  Google Scholar 

  43. Hao, K., Ullah, H., Qin, X., Li, H., Li, F., Guo, P.: Effectiveness of Bacillus pumilus PDSLzg-1, an innovative hydrocarbon-degrading bacterium conferring antifungal and plant growth-promoting function. 3 Biotech (2019). https://doi.org/10.1007/s13205-019-1842-1

    Article  Google Scholar 

  44. Vijayalakshmi, S., Govindarajan, M., Al-Mulahim, N., Ahmed, Z., Mahboob, S.: Cellulase immobilized magnetic nanoparticles for green energy production from Allamanda schottii L: Sustainability research in waste recycling. Saudi J. Biol. Sci. 28(1), 901–910 (2021). https://doi.org/10.1016/j.sjbs.2020.11.034

    Article  Google Scholar 

  45. Gong, L., Xu, H., Yuan, H., Wang, L., Yin, X., Fan, M., Cheng, L., Ma, X., Liang, R., Yang, H.: Identification of absorbed constituents and evaluation of the pharmacokinetics of main compounds after oral administration of yindanxinnaotong by UPLC-Q-TOF-MS and UPLC-QqQ-MS. RSC Adv. 8(28), 15725–15739 (2018). https://doi.org/10.1039/c7ra12659j

    Article  Google Scholar 

  46. Wang, S., Hua, Y., Zou, L., Liu, X., Yan, Y., Zhao, H., Luo, Y., Liu, J.: Comparison of chemical constituents in scrophulariae radix processed by different methods based on UFLC-MS combined with multivariate statistical analysis. J. Chromatogr. Sci. 56(2), 122–130 (2018). https://doi.org/10.1093/chromsci/bmx090

    Article  Google Scholar 

  47. Yang, R.-Z., Wang, J.-H., Wang, M.-L., Zhang, R., Lu, X.-Y., Liu, W.-H.: Dispersive solid-phase extraction cleanup combined with accelerated solvent extraction for the determination of carbamate pesticide residues in radix glycyrrhizae samples by UPLC-MS-MS. J. Chromatogr. Sci. 49(9), 702–708 (2011). https://doi.org/10.1080/03067319.2017.1290801

    Article  Google Scholar 

  48. Cai, W., Li, K.-L., Xiong, P., Gong, K.-Y., Zhu, L., Yang, J.-B., Wu, W.-H.: A systematic strategy for rapid identification of chlorogenic acids derivatives in Duhaldea nervosa using UHPLC-Q-Exactive Orbitrap mass spectrometry. Arab. J. Chem. 13(2), 3751–3761 (2020). https://doi.org/10.1016/j.arabjc.2020.01.007

    Article  Google Scholar 

  49. X. Lv, J.-Z. Sun, S.-Z. Xu, Q. Cai, Y.-Q. Liu, Rapid characterization and identification of chemical constituents in gentiana radix before and after wine-processed by UHPLC-LTQ-Orbitrap MSn, Molecules 23(12) (2018). https://doi.org/10.3390/molecules23123222.

  50. Liu, J.: Studies on the identification of constituents in ethanol extract of radix glycyrrhizae and their anti-primary hepatoma cell susceptibility. J. Chem. (2014). https://doi.org/10.1155/2014/134379

    Article  Google Scholar 

  51. Sun, L., Zhao, M., Zhao, Y., Jiang, X., Wang, M., Zhang, Y., Zhao, C.: Rapid characterization of chemical constituents of Shaoyao Gancao decoction using UHPLC coupled with Fourier transform ion cyclotron resonance mass spectrometry. RSC Adv. 10(49), 29528–29535 (2020). https://doi.org/10.1039/d0ra04701e

    Article  Google Scholar 

  52. Dey, P., Pal, P., Kevin, J.D., Das, D.B.: Lignocellulosic bioethanol production: prospects of emerging membrane technologies to improve the process—a critical review. Rev. Chem. Eng. 36(3), 333–367 (2020). https://doi.org/10.1515/revce-2018-0014

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific and technological research plan in key areas of XPCC (2020AB026), the National Natural Science Foundation of China (51863018), Young and Middle-aged Science and Technology Innovation Leading Talents Program of XPCC (2017CB007) and Autonomous Region Graduate Education Innovation Plan (No. XJ2021G108) .

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Genlin Zhang or Yanyan Dang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, G. & Dang, Y. Enhanced Extraction of Flavonoids from Licorice Residues by Solid-State Mixed Fermentation. Waste Biomass Valor 13, 4481–4493 (2022). https://doi.org/10.1007/s12649-022-01803-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01803-z

Keywords

Navigation