Skip to main content
Log in

Cultivation of Freshwater Microalgae in Wastewater Under High Salinity for Biomass, Nutrients Removal, and Fatty Acids/Biodiesel Production

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Microalgae show growth and fatty acids (FAs) accumulation up to a certain level which is dependent on species and type of cultivation conditions. Application of abiotic stress on microalgae can induce nutrient uptake and enhance biocomponent accumulation.

Methods

In the current study, freshwater microalgae (Chlorella sorokiniana GEEL-01 and Desmodesmus asymmetricus GEEL-05) were investigated for growth, nutrient removal, and FAs composition during cultivation in municipal wastewater under high NaCl concentration (150 to 600 mM) along with control (w/o NaCl addition).

Results

The growth of both microalgae declined upon an increase in NaCl concentration in the wastewater. GEEL-05 showed higher growth of 0.572 OD680 nm at 150 mM NaCl, followed by 0.40 and 0.174 OD680 nm in 300 and 450 mM NaCl, respectively. Both microalgae were completely inhibited at 600 mM NaCl. GEEL-01 and GEEL-05 removed 60–80% total nitrogen (TN) up to 450 mM NaCl concentration. Both strains totally removed the total phosphorus (TP) after 8 days of cultivation from wastewater having up to 300 mM NaCl, while 40–80% TP was removed under 450 mM NaCl. FAs profiling of microalgal strains varied under different NaCl concentrations. GEEL-01 had high palmitic acids (33%) at 300 mM NaCl, high oleic acid (28 and 37%) at 300 and 450 mM NaCl and high linoleic acid (23%) at 450 mM NaCl. Whereas, GEEL-05 showed high palmitic acid (51.59%) at 450 mM NaCl and high oleic acid (30%), at 150 mM NaCl. The improved FAs content also resulted in better biodiesel properties.

Conclusion

Both microalgae survived under high salinity having NaCl up to 450 mM in wastewater with high nutrient removal and improved FAs profile which indicated their use in wastewater treatment coupled with quality biodiesel production.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Ali, S., et al.: Resource recovery from industrial effluents through the cultivation of microalgae: A review. Bioresour. Technol. 337, 125461 (2021)

    Article  Google Scholar 

  2. Sun, C., et al.: Life-cycle assessment of biohythane production via two-stage anaerobic fermentation from microalgae and food waste. Renew. Sust. Energ. Rev. 112, 395–410 (2019)

    Article  Google Scholar 

  3. Hajinajaf, N., Mehrabadi, A., Tavakoli, O.: Practical strategies to improve harvestable biomass energy yield in microalgal culture: A review. Biomass Bioenergy. 145, 105941 (2021)

    Article  Google Scholar 

  4. Paliwal, C., et al.: Abiotic stresses as tools for metabolites in microalgae. Bioresour. Technol. 244, 1216–1226 (2017)

    Article  Google Scholar 

  5. Zhao, Y., et al.: Coupling of abiotic stresses and phytohormones for the production of lipids and high-value by-products by microalgae: a review. Bioresour. Technol. 274, 549–556 (2019)

    Article  Google Scholar 

  6. Arora, N., et al.: Insights into the enhanced lipid production characteristics of a fresh water microalga under high salinity conditions. Indus. Eng. Chem. Res. 56(25), 7413–7421 (2017)

    Article  Google Scholar 

  7. Zhang, L.J., et al.: Salinity-induced cellular cross-talk in carbon partitioning reveals starch-to-lipid biosynthesis switching in low-starch freshwater algae. Bioresour. Technol. 250, 449–456 (2018)

    Article  Google Scholar 

  8. Pandit, P.R., Fulekar, M.H., Karuna, M.S.L.: Effect of salinity stress on growth, lipid productivity, fatty acid composition, and biodiesel properties in Acutodesmus obliquus and Chlorella vulgaris. Environ. Sci. Pollut. Res. Int. 24(15), 13437–13451 (2017)

    Article  Google Scholar 

  9. Hounslow, E., Kapoore, R.V., Vaidyanathan, S., Gilmour, D.J., Wright, P.C.: The search for a lipid trigger: the effect of salt stress on the lipid profile of the model microalgal species Chlamydomonas reinhardtii for Biofuels Production. Curr. Biotechnol. 5(4), 305–313 (2016)

  10. Rearte, T.A., et al.: Biological characterization of a strain of Golenkinia (Chlorophyceae) with high oil and carotenoid content induced by increased salinity. Algal Res. 33, 218–230 (2018)

    Article  Google Scholar 

  11. MixsonByrd, S., Burkholder, J.M., Zimba, P.V.: Environmental stressors and lipid production by Dunaliella spp. I. Salinity. J. Exp. Marine Biol. Ecol. 487, 18–32 (2017)

    Article  Google Scholar 

  12. Hang, L.T., et al.: Enhanced lipid productivity of Chlamydomonas reinhardtii with combination of NaCl and CaCl2 stresses. Bioprocess Biosyst. Eng. 43(6), 971–980 (2020)

    Article  Google Scholar 

  13. Gour, R.S., Garlapati, V.K., Kant, A.: Effect of salinity stress on lipid accumulation in Scenedesmus sp. and Chlorella sp.: feasibility of stepwise culturing. Curr. Microbiol. 77(5), 779–785 (2020)

    Article  Google Scholar 

  14. Ishika, T., et al.: The effect of gradual increase in salinity on the biomass productivity and biochemical composition of several marine, halotolerant, and halophilic microalgae. J. Appl. Phycol. 30(3), 1453–1464 (2018)

    Article  Google Scholar 

  15. Srivastava, G., Nishchal, Goud, V.V.: Salinity induced lipid production in microalgae and cluster analysis (ICCB 16-BR_047). Bioresour. Technol. 242, 244–252 (2017)

    Article  Google Scholar 

  16. Li, X., et al.: Exploring stress tolerance mechanism of evolved freshwater strain Chlorella sp. S30 under 30 g/L salt. Bioresour. Technol. 250, 495–504 (2018)

    Article  Google Scholar 

  17. Fallahi, A., et al.: Cultivation of mixed microalgae using municipal wastewater: Biomass productivity, nutrient removal, and biochemical content. Iranian J. Biotechnol. 18(4), e2586 (2020)

    MathSciNet  Google Scholar 

  18. Wang, L., et al.: Isolation and screening of Tetradesmus dimorphus and Desmodesmus asymmetricus from natural habitats in Northwestern China for clean fuel production and N, P removal. Biomass Convers. Biorefin. (2020).

  19. Arif, M., et al.: Microalgae isolation for nutrient removal assessment and biodiesel production. Bioenerg. Res. 13(4), 1247–1259 (2020)

    Article  Google Scholar 

  20. Bligh, E.G., Dyer, W.J.: A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37(8), 911–917 (1959)

    Article  Google Scholar 

  21. Cardoso, L.G., et al.: Spirulina sp. as a bioremediation agent for aquaculture wastewater: production of high added value compounds and estimation of theoretical biodiesel. Bioenerg. Res. 14(1), 254–264 (2021)

    Article  Google Scholar 

  22. Kim, B.-H., et al.: Chlorella sorokiniana HS1, a novel freshwater green algal strain, grows and hyperaccumulates lipid droplets in seawater salinity. Biomass Bioenergy 85, 300–305 (2016)

    Article  Google Scholar 

  23. Rai, M.P., Gautom, T., Sharma, N.: Effect of salinity, pH, light intensity on growth and lipid production of microalgae for bioenergy application. Online J. Biol. Sci. 15(4), 260 (2015)

    Article  Google Scholar 

  24. Church, J., et al.: Effect of salt type and concentration on the growth and lipid content of Chlorella vulgaris in synthetic saline wastewater for biofuel production. Bioresour. Technol. 243, 147–153 (2017)

    Article  Google Scholar 

  25. Zhu, C., et al.: Efficient CO2 capture from the air for high microalgal biomass production by a bicarbonate pool. J. CO2 Util. 37, 320–327 (2020)

    Article  Google Scholar 

  26. Ali, M., Masood, A., Saleem, M.: Microalgae cultivation in wastewater for simultaneous nutrients removal and biomass production. Int. J. Energy Environ. Eng. 12, 475–485 (2021)

    Article  Google Scholar 

  27. Zafar, A.M., et al.: Recent updates on ions and nutrients uptake by halotolerant freshwater and marine microalgae in conditions of high salinity. J. Water Process. Eng. 44, 102382 (2021)

    Article  Google Scholar 

  28. Figler, A., et al.: Salt tolerance and desalination abilities of nine common green microalgae isolates. Water 11(12), 2527 (2019)

    Article  Google Scholar 

  29. el Salama, S., et al.: The effects of salinity on the growth and biochemical properties of Chlamydomonas mexicana GU732420 cultivated in municipal wastewater. Environ. Technol. 35, 1491–1498 (2014)

    Article  Google Scholar 

  30. Deviram, G., et al.: Applications of microalgal and cyanobacterial biomass on a way to safe, cleaner and a sustainable environment. J. Clean. Prod. 253, 119770 (2020)

    Article  Google Scholar 

  31. Poh, Z.L., et al.: The effect of stress environment towards lipid accumulation in microalgae after harvesting. Renew. Energ. 154, 1083–1091 (2020)

    Article  Google Scholar 

  32. Sinetova, M.A., et al.: Effect of salt stress on physiological parameters of microalgae Vischeria punctata strain IPPAS H-242, a superproducer of eicosapentaenoic acid. J. Biotechnol. 331, 63–73 (2021)

    Article  Google Scholar 

  33. Wang, B., Jia, J.: Photoprotection mechanisms of Nannochloropsis oceanica in response to light stress. Algal Res. 46, 101784 (2020)

    Article  Google Scholar 

  34. Christian Correa-Aguado, H., et al.: Benzyl amino purine and gibberellic acid coupled to nitrogen-limited stress induce fatty acids, biomass accumulation, and gene expression in Scenedesmus Obliquus. Phyton 90(2), 515–531 (2021)

    Article  Google Scholar 

  35. Zhou, X., et al.: Feasibility of biodiesel production by microalgae Chlorella sp. (FACHB-1748) under outdoor conditions. Bioresour. Technol. 138, 131–135 (2013)

    Article  Google Scholar 

  36. Gour, R.S., Garlapati, V.K., Kant, A.: Effect of salinity stress on lipid accumulation in Scenedesmus sp. and Chlorella sp.: feasibility of stepwise culturing. Curr. Microbiol. 77, 1–7 (2020)

    Article  Google Scholar 

  37. Kakarla, R., et al.: Application of high-salinity stress for enhancing the lipid productivity of Chlorella sorokiniana HS1 in a two-phase process. J. Microbiol. 56(1), 56–64 (2018)

    Article  Google Scholar 

  38. Verma, E., et al.: Salinity-induced oxidative stress-mediated change in fatty acids composition of Cyanobacterium synechococcus sp. PCC7942. Int. J. Environ. Sci. Technol. 16(2), 875–886 (2018)

    Article  Google Scholar 

  39. Rao, A.R., et al.: Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour. Technol. 98(3), 560–564 (2007)

    Article  Google Scholar 

  40. Kaplan, E., et al.: Assessment of different carbon and salinity level on growth kinetics, lipid, and starch composition of Chlorella vulgaris SAG 211–12. Int. J. Green Energ. 17(4), 290–300 (2020)

    Article  Google Scholar 

  41. Srinuanpan, S., et al.: Strategies to increase the potential use of oleaginous microalgae as biodiesel feedstocks: Nutrient starvations and cost-effective harvesting process. Renew. Energ. 122, 507–516 (2018)

    Article  Google Scholar 

  42. Knothe, G., Razon, L.F.: Biodiesel fuels. Prog. Energy Combust. Sci. 58, 36–59 (2017)

    Article  Google Scholar 

  43. de Jesus, S.S., et al.: Biodiesel production from microalgae by direct transesterification using green solvents. Renew. Energy 160, 1283–1294 (2020)

    Article  Google Scholar 

  44. Arguelles, E.D., Martinez-Goss, M.R.: Lipid accumulation and profiling in microalgae Chlorolobion sp. (BIOTECH 4031) and Chlorella sp. (BIOTECH 4026) during nitrogen starvation for biodiesel production. J. Appl. Phycol. 33, 1–11 (2021)

    Article  Google Scholar 

  45. Folayan, A.J., et al.: Experimental investigation of the effect of fatty acids configuration, chain length, branching and degree of unsaturation on biodiesel fuel properties obtained from lauric oils, high-oleic and high-linoleic vegetable oil biomass. Energ. Rep. 5, 793–806 (2019)

    Article  Google Scholar 

  46. Trivedi, T., et al.: Improvement in biomass, lipid production and biodiesel properties of a euryhaline Chlorella vulgaris NIOCCV on mixotrophic cultivation in wastewater from a fish processing plant. Renew. Energy 139, 326–335 (2019)

    Article  Google Scholar 

  47. Dong, L., Li, D., Li, C.: Characteristics of lipid biosynthesis of Chlorella pyrenoidosa under stress conditions. Bioprocess Biosyst. Eng. 43(5), 877–884 (2020)

    Article  Google Scholar 

  48. Ermis, H., Altinbas, M.: Effect of salinity on mixed microalgae grown in anaerobic liquid digestate. Water Environ. J. 34, 820–830 (2020)

    Article  Google Scholar 

  49. Aslam, A., et al.: Mixed microalgae consortia growth under higher concentration of CO2 from unfiltered coal fired flue gas: Fatty acid profiling and biodiesel production. J. Photochem. Photobiol. B 179, 126–133 (2018)

    Article  Google Scholar 

  50. Yu, Z., et al.: The effects of combined agricultural phytohormones on the growth, carbon partitioning and cell morphology of two screened algae. Bioresour. Technol. 239, 87–96 (2017)

    Article  Google Scholar 

  51. Ashour, M., et al.: Evaluation of a native oleaginous marine microalga Nannochloropsis oceanica for dual use in biodiesel production and aquaculture feed. Biomass Bioenergy 120, 439–447 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a start-up fund for the “Construction of the double first-class” project (Grant Number 561119201), Lanzhou University and research Supporting Project number (RSP-2021/205), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El-Sayed Salama.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Zhang, M., Alwathnani, H.A. et al. Cultivation of Freshwater Microalgae in Wastewater Under High Salinity for Biomass, Nutrients Removal, and Fatty Acids/Biodiesel Production. Waste Biomass Valor 13, 3245–3254 (2022). https://doi.org/10.1007/s12649-022-01712-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01712-1

Keywords

Navigation