Skip to main content
Log in

By-Products as Substrates for Production of Selenium-Enriched Pleurotus ostreatus Mushrooms

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The use of by-products reduces costs for the cultivation of Se-enriched mushrooms, whose consumption could reduce problems associated with Se deficiency. Treatments to decrease by-products contamination, such as sterilization, are also expensive and thus are not accessible for small producers. In this way, this work aimed to evaluate the influence of Se at 25 mg kg−1 (sodium selenite) on the growth, composition, and antioxidant activity of Pleurotus ostreatus mushrooms cultivated on substrates composed of sugarcane bagasse (CB) and spent brewer’s grain (BSG) treated with a hydrated lime solution. The use of sodium selenite did not affect the biological efficiency (33.79–52.31 g 100 g−1), antioxidant activity (32.79–44.67%), and phenolic content (458.78–754.96 mg EAG 100 g−1) of mushrooms, which had high concentrations of protein (17.07–23.50%), fibers (11.13–13.32%) and ash (4.46–7.21%). The mushrooms grown on CB alone presented 179.07 µg g−1 of Se, so the consumption of 0.31 g of dry mushroom would be sufficient to achieve the recommended daily intake of Se. The CB treated with the hydrated lime solution can be used as an inexpensive and efficient substrate to produce Se-enriched P. ostreatus mushrooms.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. FAOSTAT: Crops. http://www.fao.org/faostat/en/#data/QC (2019). Accessed 14 March 2021

  2. Kirin Holdings Company: Kirin Beer University Report Global Beer Production by Country in 2018. https://www.kirinholdings.co.jp/english/news/2019/1003_01.html (2018). Accessed 14 March 2021

  3. Christofoletti, C.A., Moreira-de-Sousa, C., Souza, R.B. et al.: O emprego de diferentes resíduos utilizados como fertilizantes na cultura de cana-de-açúcar. In: Fontanetti, C.S., Bueno, O.C. (eds.). Cana-de-açúcar e seus impactos: uma visão acadêmica, pp. 63–86. Canal 6 editora, Bauru (2017)

  4. Reinold, M.R.: Manual Prático de Cervejaria. Aden Editora e Comunicacoes Ltda, São Paulo (1997)

  5. Eggleston, G., Lima, I.: Sustainability issues and opportunities in the sugar and sugar-bioproduct industries. Sustainability 7, 12209–12235 (2015)

    Google Scholar 

  6. Lynch, K.M., Steffen, E.J., Arendt, E.K.: Brewers’ spent grain: a review with an emphasis on food and health. J. Inst. Brew. 122, 553–568 (2016)

    Google Scholar 

  7. González-García, S., Morales, P.C., Gullón, B.: Estimating the environmental impacts of a brewery waste–based biorefinery: Bio-ethanol and xylooligosaccharides joint production case study. Ind. Crops Prod. 123, 331–340 (2018)

    Google Scholar 

  8. Bianco, A., Budroni, M., Zara, S., Mannazzu, I., et al.: The role of microorganisms on biotransformation of brewers’ spent grain. Appl. Microbiol. Biotechnol. 104, 8661–8678 (2020)

    Google Scholar 

  9. Mussatto, S.I.: Brewer’s spent grain: a valuable feedstock for industrial applications. J. Sci. Food Agric. 94, 1264–1275 (2014)

    Google Scholar 

  10. Thakur, V.K., Thakur, M.K., Raghavan, P.: Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain. Chem. Eng. 2, 1072–1092 (2014)

    Google Scholar 

  11. Karp, S.J., Faraco, V., Amore, A., et al.: Statistical optimization of lacase production and delignification of sugarcane bagasse by Pleurotus ostreatus in solid-state fermentation. Biomed. Res. Int. 2015, 1–8 (2015)

    Google Scholar 

  12. Rai, R.D.: Production of edible Fungi. In: Arora, D.K. (ed.) Fungal Biotechnology in Agricultural, Food, and Environmental Applications, vol. 21, pp. 233–246. Marcel Dekker, New York (2004)

    Google Scholar 

  13. Nunes, M.D., Da Silva, M.C.S., Schram, J.G.S., et al.: Pleurotus ostreatus, mushrooms production using quick and cheap methods and the challenges to the use of coffee husk as substrate. Afr. J. Microbiol. Res. 11, 1252–1258 (2017)

    Google Scholar 

  14. Gowda, N.N., Manvi, D.: Agro-residues disinfection methods for mushroom cultivation. Agric. Rev. 40, 93–103 (2019)

    Google Scholar 

  15. Contreras, E.P., Sokolov, M., Mejía, G.: Soaking the substrate in alkaline water as a pretreatment for the cultivation of Pleurotus ostreatus. J. Hortic. Sci. Biotechnol. 79, 234–240 (2004)

    Google Scholar 

  16. Avendaño-Hernandez, R.J., Sánchez, J.E.: Self-pasteurization substrate for growing oyster mushrooms (Pleurotus spp.). Afr. J. Microbiol. Res. 7, 220–226 (2013)

    Google Scholar 

  17. Sereño, P.A.Z.: Enriquecimento, distribuição e especiação de selênio em cogumelos de Pleurotus spp. (Master’s dissertation, Universidade Federal de Viçosa) (2016) https://www.locus.ufv.br/bitstream/123456789/10062/1/texto%20completo.pdf. Accessed 15 March 2021

  18. Léon-Monzón, J.H., Sánchez, J.E., Nahed-Toral, J.: El cultivo de Pleurotus ostreatus en los Altos de Chiapas, México. Rev. Mex. Micol. 18, 31–38 (2004)

    Google Scholar 

  19. Soto, B.: Fermentation in food processing: microbiology and biotechnology. In: Soto, B. (ed.) Fermentation processes, pp. 173–248. ED Tech Press, Waltham Abbey (2019)

    Google Scholar 

  20. Chang, S.T., Miles, P.G.: Mushrooms: Cultivation, Nutritional Value Medicinal Effect and Environmental Impact, 2nd edn. CRC Press, Boca Raton (2004)

    Google Scholar 

  21. Husan, A., Jawaid, M.: Nanomaterials for Agriculture and Forestry Applications. Elsevier, Amsterdam (2020)

    Google Scholar 

  22. Ooi, V.E.C.: Antitumor and immunomodulatory activities of mushroom polysaccharides. In: Cheung, P.C.K. (ed.) Mushrooms as Functional Foods, 1st edn., pp. 147–198. Wiley, Hoboken (2008)

    Google Scholar 

  23. Oyetayo, V.O., Ariyo, O.O.: Micro and macronutrient properties of Pleurotus ostreatus (Jacq:Fries) cultivated on different wood substrates. Jordan J. Biol. Sci. 6, 223–226 (2013)

    Google Scholar 

  24. Da Silva, M.C.S., Naozuka, J., Luz, J.M.R., et al.: Enrichment of Pleurotus ostreatus mushrooms with selenium in coffee husks. Food Chem. 131, 558–563 (2012)

    Google Scholar 

  25. Oliveira, A.P., Leme, F.O., Nomura, C.S., et al.: Elemental imaging by Laser induced breakdown spectroscopy to evaluate selenium enrichment effects in edible mushrooms. Nature 9, 1–10 (2019)

    Google Scholar 

  26. Maseko, T., Howell, K., Dunshea, F.R., et al.: Selenium-enriched Agaricus bisporus increases expression and activity of glutathione peroxidase-1 and expression of glutathione peroxidase-2 in rat colon. Food Chem. 146, 327–333 (2014)

    Google Scholar 

  27. Prauchner, C.A.: A Importância do Selênio para a Agropecuária e Saúde Humana. UFSM, Santa Maria (2014)

  28. Reilly, C.: Selenium in Food and Health, 2nd edn. Springer, Brisbane (2006)

    Google Scholar 

  29. Nève, J.: Selenium in nutrition and therapeutics. In: Bittar, E.E., Bittar, N. (eds.) Principles of Medical Biology, vol. 8, pp. 985–994. Elsevier, Amsterdam (1997)

    Google Scholar 

  30. Zhou, F., Dinh, Q.T., Yang, W., et al.: Assessment of speciation and in vitro bioaccessibility of selenium in Seenriched Pleurotus ostreatus and potential health risks. Ecotoxicol. Environ. Saf. 185, 1–9 (2019)

    Google Scholar 

  31. Niedzielski, P., Mleczek, M., Siwulski, M., et al.: Efficacy of supplementation of selected medicinal mushrooms with inorganic selenium salts. J. Environ. Sci. Health B 49, 929–937 (2014)

    Google Scholar 

  32. Yoshida, M., Sugihara, S., Inoue, Y., et al.: Composition of chemical species of selenium contained in selenium-enriched Shiitake mushroom and vegetables determined by high performance liquid chromatography with inductively coupled plasma mass spectrometry. J. Nutr. Sci. Vitaminol. 51, 194–199 (2005)

    Google Scholar 

  33. Milovanović, I., Brčeski, I., Stajić, M., et al.: Potential of Pleurotus ostreatus mycelium for selenium absorption. Sci. World J. 2014, 1–8 (2014)

    Google Scholar 

  34. Rzymski, P., Mleczek, M., Niedzielski, P., et al.: Cultivation of Agaricus bisporus enriched with selenium, zinc and copper. J. Sci. Food Agric. 97, 923–928 (2016)

    Google Scholar 

  35. Kaur, G., Kalia, A., Sodhi, H.S.: Selenium biofortification of Pleurotus species and its effect on yield, phytochemical profiles, and protein chemistry of fruiting bodies. J. Food Biochem. 42, 1–7 (2017)

    Google Scholar 

  36. Golian, M., Hegedűsová, A., Trochcová, M., et al.: The effect of sodium selenate application on growth of the fruiting bodies in the first flush of mushroom Pleurotus ostreatus (Jacq.) P. Kumm. Acta Hortic Regiotecturae 2018, 25–29 (2018)

    Google Scholar 

  37. Rathore, H., Sharma, A., Prasad, S., et al.: Selenium bioaccumulation and associated nutraceutical properties in Calocybe indica mushroom cultivated on Se-enriched wheat straw. J. Biosci. Bioeng. 126, 1–6 (2018)

    Google Scholar 

  38. Da Silva, M.C.S., Luz, J.M.R., Paiva, A.P.S., et al.: Growth and tolerance of Pleurotus ostreatus at different selenium forms. J. Agric. Sci. 11, 151–158 (2019)

    Google Scholar 

  39. Assunção, L.S., Da Silva, M.C.S., Fernandez, M.G., et al.: Speciation of selenium in Pleurotus ostreatus and Lentinula edodes mushrooms. J. Biotechnol. Lett. 5, 79–86 (2014)

    Google Scholar 

  40. Fasoranti, O.F., Ogidi, C.O., Oyetayo, V.O.: Nutrient contents and antioxidant properties of Pleurotus spp. cultivated on substrate fortified with selenium. Curr. Res. Environ. Appl. Mycol. 9, 66–76 (2019)

    Google Scholar 

  41. Ogidi, C.O., Nunes, M.D., Da Silva, M.C.S., et al.: Growth rate and selenium bioaccumulation in Pleurotus species cultivated on signal grass, Urochloa decumbens (Stapf) R. D. Webster. Curr. Res. Nutr. Food Sci. 5, 137–143 (2017)

    Google Scholar 

  42. Kasuya, M.C.M., Luz, J.M.R., Nunes, M.D., et al.: Production of selenium-enriched mushrooms in coffee husks and use of this colonized residue. In: Preedy, V.R. (ed.) Coffee in Health and Disease Prevention, pp. 301–309. Elsevier, Amsterdam (2015)

    Google Scholar 

  43. Association of Official Analytical Chemists – AOAC: Official Methods of Analysis of AOAC International, 17th edn. AOAC International, Gaithersburg (2000)

    Google Scholar 

  44. Jones, D.B.: Factors for converting percentages of nitrogen in foods and feeds into percentages of protein. US Department of Agriculture - circ. 183. Washington, D.C. http://toolbox.foodcomp.info/References/Protein/Jones_1941%20nitrogen-protein%20conversion%20cir183.pdf (1941). Acessed 18 March 2021

  45. Detmann, E., Souza, M.A., Valadares Filho, S.C. et al.: Métodos para Análise de Alimentos - INCT - Ciência Animal. Suprema, Visconde do Rio Branco (2012)

  46. Silva, D.J., Queiroz, A.C.: Análise de Alimentos (Métodos Químicos e Biológicos). 3.ed. UFV, Viçosa (2006)

  47. Oliveira, A.P., Naozuka, J.: Preliminary results on the feasibility of producing selenium-enriched pink (Pleurotus djamor) and white (Pleurotus ostreatus) oyster mushrooms:Bioaccumulation, bioaccessibility, and Se-proteins distribution. Microchim. J. 145, 1143–1150 (2019)

    Google Scholar 

  48. Frank, A.: Automated wet ashing and multi-metal determination in biological materials by atomic-absorption spectrometry. Fresenius’ Z. Anal. Chem. 279, 101–102 (1976)

    Google Scholar 

  49. Braga, J.M., Defelipo, B.V.: Determinação espectrofotométrica de fósforo em extratos de solo e material vegetal. Rev. Ceres 21, 73–85 (1974)

    Google Scholar 

  50. Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2, 559–572 (1901)

  51. Nunes, C.A., Freitas, M.P., Pinheiro, A.C.M., et al.: Chemoface: a novel free user-friendly interface for chemometrics. J. Braz. Chem. Soc. 23, 2003–2010 (2012)

    Google Scholar 

  52. Wang, D., Sakoda, A., Suzuki, M.: Biological efficiency and nutritional value of Pleurotus ostreatus cultivated on spent beer grain. Biores. Technol. 78, 293–300 (2001)

    Google Scholar 

  53. Breene, W.M.: Nutritional and medicinal value of specialty mushrooms. J. Food Prot. 53, 883–894 (1990)

    Google Scholar 

  54. Kähkönen, M.P., Hopia, A.I., Heikki, J.V., et al.: Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 47, 3954–3962 (1999)

    Google Scholar 

  55. Brand-Williams, W., Cuvelier, M.E., Berset, C.: Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 28, 25–30 (1995)

    Google Scholar 

  56. Nenadis, N., Wang, L.F., Tsimidou, M., et al.: Estimation of scavenging activity of phenolic compounds ising the ABTS·+ assay. J. Agric. Food Chem. 52, 4669–4674 (2004)

    Google Scholar 

  57. Waterhouse, A.L.: Wine phenolics. Ann. N.Y. Acad. Sci. 957, 21–36 (2002)

    Google Scholar 

  58. Ajanaku, K.O., Dawodu, F.A., Ajanaku, C.O., Nwinyi, O.C.: Functional and nutritional properties of spent grain enhanced cookies. Am. J. Food Technol. 6, 763–771 (2011)

    Google Scholar 

  59. Carvalheiro, F., Esteves, M., Parajó, J., Pereira, H., Girio, F.: Production of oligosaccharides by autohydrolysis of brewery’s spent grain. Biores. Technol. 91, 93–100 (2004)

    Google Scholar 

  60. Coradi, G.V., Visitação, V.L., Lima, E.A., Saito, L.Y.T., Palmieri, D.A., Takita, M.A., Neto, P.O., Lima, V.M.G.: Comparing submerged and solid-state fermentation of agro-industrial residues for the production and characterization of lipase by Trichoderma harzianum. Ann. Microbiol. 63, 533–540 (2013)

    Google Scholar 

  61. Siqueira, F.G., Siqueira, A.G., Siqueira, E.G., Carvalho, M.A., Peretti, B.M.P., Jaramillo, P.M.D., Teixeira, R.S.S., Dias, E.S., Félix, C.R., Filho, E.X.F.: Evaluation of holocellulase production by plant-degrading fungi grown on agro-industrial residues. Biodegradation 21, 815–824 (2010)

    Google Scholar 

  62. Ulloa, J.B., Weerd, J.H., Huisman, E.A., Verreth, J.A.J.: Tropical agricultural residues and their potential uses in fish feeds: the Costa Rican situation. Waste Manag. 24, 87–97 (2004)

    Google Scholar 

  63. Xiros, C., Topakas, E., Katapodis, P., Christakopoulos, P.: Hydrolysis and fermentation of brewer’s spent grain by Neurospora crassa. Biores. Technol. 99, 5427–5435 (2008)

    Google Scholar 

  64. Schmitz, E., Karlsson, E.N., Adlercreutz, P.: Ultrasound assisted alkaline pre-treatment efciently solubilises hemicellulose from oat hulls. Waste Biomass Valorization (2021). https://doi.org/10.1007/s12649-021-01406-0

    Article  Google Scholar 

  65. Sun, R., Tomkinson, J.: Characterization of hemicelluloses obtained by classical and ultrasonically assisted extractions from wheat straw. Carbohydr. Polym. 50, 263–271 (2002). https://doi.org/10.1016/S0144-8617(02)00037-1

    Article  Google Scholar 

  66. Hersey, M.D.: Hints and suggestions to farmers. In: Hersey, M.D. My work is that of conservation: An environmental biography of George Washington Carver, pp. 124–159. Ugapress, Athens (2011)

  67. Wolf, J., Gouvea, A., Silva, E.R.L., et al.: Métodos físicos e cal hidratada para manejo do cascudinho dos aviários. Ciência Rural 44, 161–166 (2014)

    Google Scholar 

  68. Cunningham, A.B., Yang, X.: Mushrooms in Forests and Woodlands: Resources Management, Values and Local Livelihoods. Earthscan, Londres (2011)

    Google Scholar 

  69. Hikichi, S.E., Andrade, R.P., Dias, E.S., et al.: Biotechnological applications of coffee processing by-products. In: Galanakis, C.M. (ed.) Handbook of Coffee Processing By-Products: Sustainable Applications, pp. 221–244. Elsevier, Amsterdam (2017)

    Google Scholar 

  70. Kalač, P.: Proximate composition and nutrients. In: Kalač, P. (ed.) Edible Mushrooms, pp. 7–69. Academic Press, San Diego (2016)

    Google Scholar 

  71. Bonatti, M., Karnopp, P., Soares, H.M., Furlan, S.A.: Evaluation of Pleurotus ostreatus and Pleurotus sajor-caju nutritional characteristics when cultivated in diferent lignocellulosic wastes. Food Chem. 88, 425–428 (2004)

    Google Scholar 

  72. Ogundele, G.F., Salawu, S.W., Abdulraheem, I.A., Bamidele, O.P.: Nutritional composition of oyster mushroom (Pleurotus ostreatus) grown on softwood (Daniella oliveri) sawdust and hardwood (Anogeissus leiocarpus) sawdust. Br. J. Appl. Sci. Technol. 20, 1–7 (2017)

    Google Scholar 

  73. Zięba, P., Kała, K., Włodarczyk, A., et al.: Selenium and zinc biofortification of Pleurotus eryngii mycelium and fruiting bodies as a tool for controlling their biological activity. Molecules 25, 1–18 (2020)

    Google Scholar 

  74. Solovyev, N., Prakash, N.T., Bhatia, P., et al.: Selenium-rich mushrooms cultivation on a wheat straw substrate from seleniferous area in Punjab, India. J. Trace Elem. Med Biol. 50, 362–366 (2018)

    Google Scholar 

  75. Rathore, H., Sharma, A., Prasad, S., et al.: Yield, nutritional composition and antioxidant properties of Calocybe indica cultivated on wheat straw basal substrate supplemented with nitrogenous tree leaves. Waste Biomass Valorization 11, 807–815 (2020)

    Google Scholar 

  76. Institute of Medicine: Food and Nutrition Board. Dietary Reference Intakes. National Academic Press, Washington, DC (2001)

    Google Scholar 

  77. Gąsecka, M., Mleczek, M., Siwulski, M., et al.: The effect of selenium on phenolics and flavonoids in selected edible white rot fungi. LWT Food Sci. Technol. 63, 726–731 (2015)

    Google Scholar 

  78. Carrasco-Gonzalez, J.A., Serna-Saldívar, S.O., Gutierrez-Uribe, J.A.: Mycochemical changes induced by selenium enrichment in P ostreatus fruiting bodies. J. Agric. Food Chem. 65, 4074–4082 (2017)

    Google Scholar 

  79. Gąsecka, M., Mleczek, M., Siwulski, M., et al.: Phenolic composition and antioxidant properties of Pleurotus ostreatus and Pleurotus eryngii enriched with selenium and zinc. Eur. Food Res. Technol. 242, 723–732 (2016)

    Google Scholar 

  80. Gąsecka, M., Mleczek, M., Siwulski, M., et al.: Phenolic and flavonoid content in Hericium erinaceus, Ganoderma lucidum, and Agrocybe aegerita under selenium addition. Acta Alimentaria 45, 300–308 (2016)

    Google Scholar 

  81. Frankel, E.N., Meyer, A.S.: The problem of using one dimensional methods to evaluate multifunctional food and biological antioxidants. J. Sci. Food Agric. 80, 1925–1941 (2000)

    Google Scholar 

  82. Rodriguez Estrada, A.E., Lee, H.J., Beelman, R.B., et al.: Enhancement of the antioxidants ergothioneine and selenium in Pleurotus eryngii var. eryngii basidiomata through cultural practices. World J. Microbiol. Biotechnol. 25, 1597–1607 (2009)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Coordenação de Aperfeiçoamento de Pessoal de nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico (CNPq) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) for the unrestricted financial support to researches in Brazil. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brasil (CAPES)–Finance Code 001.

Funding

This project was not directly financed by public or private agencies. However, equipment, reagents, and several materials used in this work were acquired through projects financed by follow Brazilian agencies: Coordenação de Aperfeiçoamento de Pessoal de nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico (CNPq) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, formal analysis, investigation, writing—original draft, writing—review & editing: Diene France de Souza. Conceptualization, methodology, resources, writing—review and editing, supervision: Marliane de Cássia Soares da Silva. Investigation, Writing—review & editing: Maiane de Paula Alves. Selenium analysis: Dairon Pérez Fuentes, Lucas Eduardo Oliveira Porto, Pedro Vitoriano de Oliveira. Conceptualization, resources, Writing—review & editing: Pedro Vitoriano de Oliveira, Maria Catarina Megumi Kasuya, Monique Renon Eller.

Corresponding author

Correspondence to Monique Renon Eller.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Consent for publication

All of the authors have approved the contents of this paper and have agreed to the Waste and Biomass Valorization submission policies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, D.F., da Silva, M.d.S., de Paula Alves, M. et al. By-Products as Substrates for Production of Selenium-Enriched Pleurotus ostreatus Mushrooms. Waste Biomass Valor 13, 989–1001 (2022). https://doi.org/10.1007/s12649-021-01586-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01586-9

Keywords

Navigation