Skip to main content
Log in

Preparation and Characterization of a Novel Nanocellulose-Derivative as a Potential Radiopharmaceutical Agent

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Nanocellulose (NC) has a wide variety of emerging applications, including enzyme immobilization, drug delivery, and imaging diagnosis. On the other hand, derivatives of hydrazinonicotinic acid (HYNIC) have been used as coordination-agents for their binding to 99mTc in the development of potential radiopharmaceuticals. To this end, we studied and developed NC-HYNIC-99mTc for diagnostic imaging using NC obtained from rice husk using Trichoderma reseii and Phanaerochaete chrysosporium in a semi-solid fermentation system to generate a potential nanoradiopharmaceutical agent. In this work, we performed the separation of nanosilica, microcellulose, and nanocellulose using the TAPPI T203 os-74 technique. The synthesis of conjugate NC-HYNIC was performed following a one-pot procedure. The NC and the conjugate NC-HYNIC were characterized by Fourier Transform Infrared Spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and atomic force microscopy (AFM). We obtained NC with a structure of laminar-like nanofibers. The yield of NC was 55% and the conjugate NC-HYNIC was obtained with a yield of 36%. The TGA and FTIR analyses showed that the NC functionalized with HYNIC had similar characteristics to those of NC. In addition, the AFM analysis of the functionalized NC showed an average height of 8 ± 3 nm, while the NC showed an average height of 10 ± 4 nm. The subsequent binding to 99mTc was assayed, and the purity of the radiolabeled product and the efficiency of the process was studied by ITLC chromatography. The radiolabeling process was very efficient with a radiochemical purity of 98 ± 1.2%, which opens the possibility of a new potential-imaging agent.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rajinipriya, M., Nagalakshmaiah, M., Robert, M., Elkoun, S.: Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood-based nanocellulose: a review. ACS Sustain. Chem. Eng. 6(3), 2807–2828 (2018)

    Article  Google Scholar 

  2. Zhang, S., Zhang, F., Jin, L., Liu, B., Mao, Y., Liu, Y., Huang, J.: Preparation of spherical nanocellulose from waste paper by aqueous NaOH/thiourea. Cellulose 26(8), 5177–5185 (2019)

    Article  Google Scholar 

  3. Curvello, R., Raghuwanshi, V.S., Garnier, G.: Engineering nanocellulose hydrogels for biomedical applications. Adv. Coll. Interface. Sci. 267, 47–61 (2019)

    Article  Google Scholar 

  4. Hossain, M.I., Zaman, H., Rahman, T.: Derivation of nanocellulose from native rice husk. Chem. Eng. Res. Bull. 20(1), 19 (2018)

    Article  Google Scholar 

  5. Ravindran, R., Jaiswal, A.K.: Exploitation of food industry waste for high-value products. Trends Biotechnol. 34(1), 58–69 (2016)

    Article  Google Scholar 

  6. Fritsch, C., Staebler, A., Happel, A., Cubero, M.A., Aguiló-Aguayo, I., Abadias, M., Gallur, M., Cigognini, I.M., Montanari, A., López, M.J., Suárez-Estrella, F., Brunton, N., Luengo, E., Sisti, L., Ferri, M., Belotti, G.: Processing, valorization and application of bio-waste derived compounds from potato, tomato olive and cereals: a review. Sustainability. 9, 1492 (2017)

    Article  Google Scholar 

  7. Navarro, M.V., Vega-Baudrit, J.R., Sibaja, M.R., Melero, F.J.: Use of rice husk as filler in Flexible Polyurethane Foams. Macromol. Symp. 321(1), 202–207 (2012)

    Article  Google Scholar 

  8. Kumar, S., Sangwan, P., Dhankhar, R., Mor, V., Bidra, S.: Utilization of rice husk and their ash: a review. Res. J. Chem. Environ. Sci. 1(5), 126–129 (2013)

    Google Scholar 

  9. Thompson, L., Azadmanjiri, J., Nikzad, M., Sbarski, I., Wang, J., Yu, A.: Cellulose nanocrystals: production, functionalization and advanced applications Rev. Adv. Mater. Sci. 58, 1–16 (2019)

    Google Scholar 

  10. Mariño, M., Lopes da Silva, L., Durán, N., Tasic, L.: Enhanced materials from nature: nanocellulose from citrus waste. Molecules 20(4), 5908–5923 (2015)

    Article  Google Scholar 

  11. Vigneshwaran, N., Satyamurthy, P.: Nanocellulose production using cellulose degrading fungi, pp. 321–331. In Advances and Applications Through Fungal Nanobiotechnology. Springer, Cham (2016)

    Google Scholar 

  12. Phanthong, P., Reubroycharoen, P., Hao, X., Xu, G., Abudula, A., Guan, G.: Nanocellulose: extraction and application. Carbon Res. Conv. 1(1), 32–43 (2018)

    Google Scholar 

  13. Lin, N., Dufresne, A.: Nanocellulose in biomedicine: current status and future prospect. Eur. Polymer J. 59, 302–325 (2014)

    Article  Google Scholar 

  14. Jorfi, M., Foster, E.J.: Recent advances in nanocellulose for biomedical applications. J. Appl. Polym. Sci. 132(14), 41719 (2015)

    Article  Google Scholar 

  15. de Oliveira, A.D., Gonçalves, C.A.: Polymer Nanocomposites with Different Types of Nanofiller. Sivasankaran, S., (Ed.) IntechOpen. (2019).

  16. Dufresne, A., Castaño, J.: Polysaccharide nanomaterial reinforced starch nanocomposites: a review. Starch - Stärke. 69(1–2), 1500307 (2016)

    Google Scholar 

  17. Bongao, H.C., Gabatino, R.R.A., Arias, C.F.H., Magdaluyo, E.R., Jr.: Micro/nanocellulose from waste Pili (Canarium ovatum) pulp as a potential anti-ageing ingredient for cosmetic formulations. Mater. Today: Proceed. 22, 275–280 (2020)

    Google Scholar 

  18. Soccol, C., Ferreira, E., Junior, L., Grace, S., Lorenci, A., Porto, P.: Recent developments and innovations in solid state fermentation. Biotechnol. Res. Innov. 1(1), 52–71 (2017)

    Article  Google Scholar 

  19. Manan, M.A., Webb, C.: Design aspects of solid state fermentation as applied to microbial bioprocessing. J. Appl. Biotechnol. Bioeng. 4(1), 511–532 (2017)

    Google Scholar 

  20. Lopretti, M., Lecot, N., Rodriguez, A., Lluberas, G., Orozco, F., Bolaños, L., Montes de Oca, G., Cerecetto, H., Vega-Baudrit, J.: Biorefinery of rice husk to obtain functionalized bioactive compounds. J. Renew. Mater. 7(4), 313–324 (2019)

    Article  Google Scholar 

  21. Owen, S.C., Chan, D.P.Y., Shoichet, M.S.: Polymeric micelle stability. Nano Today 7(1), 53–65 (2012)

    Article  Google Scholar 

  22. Lu, Y., Park, K.: Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int. J. Pharm. 453(1), 198–214 (2013)

    Article  Google Scholar 

  23. Lecot, N., Glisoni, R., Oddone, N., Benech, J., Fernández, M., Gambini, J.P., Cabral, P., Sosnik, A.: Glucosylated polymeric micelles actively target curcumin to a breast cancer model. Adv. Ther. 2000010, 1–10 (2020)

    Google Scholar 

  24. Ono, M., Arano, Y., Mukai, T., Fujioka, Y., Ogawa, K., Uehara, T., Saga, T., Konishi, J., Saji, H.: 99mTc-HYNIC-derivatized ternary ligand complexes for 99mTc-labeled polypeptides with low in vivo protein binding. Nucl. Med. Biol. 28(3), 215–224 (2001)

    Article  Google Scholar 

  25. García, M.F., Gallazzi, F., de Souza Junqueira, M., Fernández, M., Camacho, X., da Silva Mororó, J., Faria, D., de Godoi Carneiro, C., Couto, M., Carrión, F., Pritsch, O., Chammas, R., Quinn, T., Cabral, P., Cerecetto, H.: Synthesis of hydrophilic HYNIC-[1,2,4,5]tetrazine conjugates and their use in antibody pretargeting with 99m Tc. Organ. Biomol. Chem. 16(29), 5275–5285 (2015)

    Article  Google Scholar 

  26. Guleria, M., Das, T., Vats, K., Amirdhanayagam, J., Mathur, A., Sarmad, H.D., Dash, A.: Preparation and evaluation of 99mTc-labeled porphyrin complexes prepared using PNP and HYNIC cores: studying the effects of core selection on pharmacokinetics and tumor uptake in a mouse model. Med. Chem. Commun. 10, 606–615 (2019)

    Article  Google Scholar 

  27. Levente, K., Meszaros, A.D., Stefano, C.G., Biagini, Blower, P.J.: Hydrazinonicotinic acid (HYNIC) – Coordination chemistry and applications in radiopharmaceutical chemistry. Inorganica Chimica Acta. 363(6), 1059–1069 (2010)

    Article  Google Scholar 

  28. Torabizadeh, S.A., Abedi, S.M., Noaparast, Z., Hosseinimehr, S.J.: Comparative assessment of a 99m Tc labeled H12992-HYNIC peptide bearing two different co-ligands for tumor-targeted imaging. Bioorgan. Med. Chem. 25(9), 2583–2592 (2017)

    Article  Google Scholar 

  29. Liu, S.: 6-Hydrazinonicotinamide Derivatives as Bifunctional Coupling Agents for 99mTc-Labeling of Small Biomolecules. Contrast Agents III. Topics in Current Chemistry. 252. Springer, Berlin, Heidelberg.

  30. Anzola, L.K., Rivera, J.N., Dierckx, R.A., Lauri, C., Valabrega, S., Galli, F., Moreno, S., Glaudemans, A.W.J., Signore, A.: Value of somatostatin receptor scintigraphy with 99mTc-HYNIC-TOC in patients with primary sjögren syndrome. J. Clin. Med. 8(6), 763 (2019)

    Article  Google Scholar 

  31. Sarparanta, M., Pourat, J., Carnazza, K.E., Tang, J., Paknejad, N., Reiner, T., Kostiainen, M.A., Lewis, J.S.: Multimodality labeling strategies for the investigation of nanocrystalline cellulose biodistribution in a mouse model of breast cancer. Nucl. Med. Biol. 80–81, 1–12 (2019)

    Google Scholar 

  32. Imlimthan, S., Otaru, S., Keinänen, O., Correia, A., Lintinen, K.S., Santos, H.A., Airaksinen, A.J., Kostiainen, M.A., Sarparanta, M.: Radiolabeled molecular imaging probes for the in vivo evaluation of cellulose nanocrystals for biomedical applications. Biomacromol 20(2), 674–683 (2018)

    Article  Google Scholar 

  33. Lopretti, M. Tesis de PhD en Biología 1990. Sistemas enzimáticos de hongos y bacterias modificadoras de Lignina, PEDECIBA, UdelaR.

  34. Lopretti, M., Esquivel, M., Madrigal, S., Corrales, Y., Vega-Baudrit, J.R.: Preliminary study of the production of hybrid compounds of chitosan and polyphenols derived from lignin from agroindustry and shrimp fishery. Revista Científica. 27(1) (2017).

  35. Tappi Standards, T203 OS-61. Technical Association of the Pulps and Paper Industry, 360 Lexington Avenue, New York, NY 10017. https://research.cnr.ncsu.edu/wpsanalytical/documents/T203.PDF. Accessed 3 Nov 2020.

  36. Martelli-Tosi, M., Masson, M.M., Silva, N.C., Esposto, B.S., Barros, T.T., Assis, O.B., Tapia-Blácido, D.R.: Soybean straw nanocellulose produced by enzymatic or acid treatment as a reinforcing filler in soy protein isolate films. Carbohyd. Polym. 198, 61–68 (2018)

    Article  Google Scholar 

  37. Leung, A.C.W., Hrapovic, S., Lam, E., Liu, Y., Male, K.B., Mahmoud, K.A., Luong, J.H.T.: Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7(3), 302–305 (2011)

    Article  Google Scholar 

  38. Navarro, J.R.G., Bergström, L.: Labelling of N-hydroxysuccinimide-modified rhodamine B on cellulose nanofibrils by the amidation reaction. RSC Adv. 4(105), 60757–60761 (2014)

    Article  Google Scholar 

  39. Navarro, J.R.G., Conzatti, G., Yu, Y., Fall, A.B., Mathew, R., Eden, M., Bergström, L.: Multi-color fluorescent labelling of cellulose nanofibrils by click-chemistry. Biomacromol 16, 1293–1300 (2015)

    Article  Google Scholar 

  40. Wei, L., Agarwal, U.P., Hirth, K.C., Matuana, L.M., Sabo, R.C., Stark, N.M.: Chemical modification of nanocellulose with canola oil fatty acid methyl ester. Carbohyd. Polym. 169, 108–116 (2017)

    Article  Google Scholar 

  41. Wu, W., Song, R., Xu, Z., Jing, Y., Dai, H., Fang, G.: Fluorescent cellulose nanocrystals with responsiveness to solvent polarity and ionic strength. Sens. Actuators, B Chem. 275, 490–498 (2018)

    Article  Google Scholar 

  42. Hu, Z., Zhai, R., Li, J., Zhang, Y., Lin, J.: Preparation and Characterization of Nanofibrillated Cellulose from Bamboo Fiber via Ultrasonication Assisted by Repulsive Effect. Int. J. Polym. Sci. 1–9 (2017).

  43. Szymańska-Chargot, M., Cieśla, J., Chylińska, M.: Effect of ultrasonication on physicochemical properties of apple based nanocellulose-calcium carbonate composites. Cellulose 25, 4603–4621 (2018)

    Article  Google Scholar 

  44. Garcia, M.F., Calzada, V., Camacho, X., Goicochea, E., Gambini, J.P., Quinn, T.P., Porcal, W., Cabral, P.: Microwave-assisted Synthesis of HYNIC Protected Analogue for 99mTc Labeled Antibody. Current Radiopharmaceuticals. 7(2) (2014).

  45. Oda, C.M.R., Fernandes, R.S., de Araújo Lopes, S.C.: Synthesis, characterization and radiolabeling of polymeric nano-micelles as a platform for tumor delivering. Biomed. Pharmacother. 89:268–275 (2017).

  46. Ocampo-García, B.E., Ramírez, F.M., Ferro-Flores, G., De. León-Rodríguez, L.M., Santos-Cuevas, C.L., Morales-Avila, E., de Murphy, C.A., Pedraza-López, M., Medina, L.A., Camacho-López, M.A.: (99m) Tc-labelled gold nanoparticles capped with HYNIC-peptide/mannose for sentinel lymph node detection. Nucl. Med. Biol. 38(1), 1–11 (2011)

    Article  Google Scholar 

  47. Monteiro, LOF., Fernandes, RS, Castro LC, Valbert N. Cardoso, Mônica C. Oliveira, Danyelle M. Townsend, Alice Ferretti, Domenico Rubellod, Elaine A. Leitea, André L.B. de Barros.: Technetium-99m radiolabeled paclitaxel as an imaging probe for breast cancer in vivo. Biomed Pharmacother. 89, 146–151 (2017).

  48. Cabrera M, Medrano, A., Lecot, N., Fernandez, M., Moreno, M., Chabalgoity, J.A., Gambini, J.P., Alonso, O., Balter, H., Cabral, P.: A novel method to radiolabel stealth liposome through 1,2- dimyristoyl-sn-glycero-3-phosphoethanolamine-N-DTPA with 99mTc and biological evaluation. J. Anal. Oncology. 1 (2013).

  49. Camacho, X., Garcia, M.F., Calzada, V., Fernandez, M., Porcal, W., Alonso, O., Gambini, J., Cabral, P.: Synthesis and evaluation of 99mTc chelate-conjugated bevacizumab. Curr. Radiopharm. 6(1), 12–19 (2013)

    Article  Google Scholar 

  50. Tejería, E., Giglio, J., Fernández, L., Rey, A.: Development and evaluation of a 99mTc(V)-nitrido complex derived from estradiol for breast cancer imaging. Appl. Radiat. Isotopes. 154, 108854 (2019).

  51. Wandas, M., Puszko, A.: The IR spectra of 2-alkylamino- and alkylnitramino-3- or 5-nitro-4-methylpyridine derivatives. Chem. Heterocycl. Compd. 36, 796–800 (2000)

    Article  Google Scholar 

  52. Hossain, S.S., Mathur, L., Roy, P.K.: Rice husk/rice husk ash as an alternative source of silica in ceramics: a review. J. Asian Ceram. Soc. 6(4), 299–313 (2018)

    Article  Google Scholar 

  53. Ribeiro, R.S., Pohlmann, B.C., Calado, V., Bojorge, N., Pereira, N., Jr.: Production of nanocellulose by enzymatic hydrolysis: Trends and challenges. Eng. Life Sci. 19(4), 279–291 (2019)

    Article  Google Scholar 

  54. Satyamurthy, P., Jain, P., Balasubramanya, R.H., Vigneshwaran, N.: Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohyd. Polym. 83(1), 122–129 (2011)

    Article  Google Scholar 

  55. Satyamurthy, P., Vigneshwaran, N.: A novel process for synthesis of spherical nanocellulose by controlled hydrolysis of microcrystalline cellulose using anaerobic microbial consortium. Enzyme Microb. Technol. 52(1), 20–25 (2013)

    Article  Google Scholar 

  56. Li, X., Kondo, R., Sakai, K.: In vivo and in vitro biobleaching of unbleached hardwood kraft pulp by a marine fungus, Phlebia sp. MG-60. Progress Biotechnol 21, 185–191 (2002)

    Google Scholar 

  57. Nunes, C. S., Malmlöf, K.: Enzymatic decontamination of antimicrobials, phenols, heavy metals, pesticides, polycyclic aromatic hydrocarbons, dyes, and animal waste. Enzymes Human Animal Nutr. (pp. 331–359). Academic Press. (2018).

  58. Chowdhary, P., More, N., Yadav, A., Bharagava, R. N.: Ligninolytic Enzymes: An Introduction and Applications in the Food Industry. In Enzymes in Food Biotechnology (pp. 181–195). Academic Press. (2019).

  59. De. Aguiar, J., Bondancia, T.J., Claro, P.I.C., Mattoso, L.H.C., Farinas, C.S., Marconcini, J.M.: Enzymatic deconstruction of sugarcane bagasse and straw to obtain cellulose nanomaterials. ACS Sustain. Chem. Eng. 8, 2287–2299 (2020)

    Article  Google Scholar 

  60. Habibi, Y.: Key advances in the chemical modification of nanocelluloses. Chem. Soc. Rev. 43(5), 1519–1542 (2014)

    Article  Google Scholar 

  61. Wang, Y., Wang, X., Xie, Y.: Functional nanomaterials through esterification of cellulose: a review of chemistry and application. Cellulose 25, 3703–3731 (2018)

    Article  Google Scholar 

  62. Dien, L. Q., Cuong, T. D., Minh Phuong, N. T., Hoang, P. H., Truyen, D. N., Minh Nguyet, N. T.: Nanocellulose fabrication from Oryza sativa L. rice straw using combined treatment by hydrogen peroxide and dilute sulfuric acid solution. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 1–10 (2019).

  63. Onkarappa, H. S., Prakash, G. K., Pujar, G. H., Rajith Kumar, C. R., Betageri, V. S.: Facile synthesis and characterization of nanocellulose from Zea mays husk. Polym. Comp. 1 (7) (2020).

  64. Rajinipriya, M., Nagalakshmaiah, M., Robert, M., Elkoun, S.: Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review. ACS Sustain. Chem. Eng. 6, 2807–2828 (2018)

    Article  Google Scholar 

  65. Michelin, M., Gomes, D.G., Romaní, A., Polizeli, M.D.L., Teixeira, J.A.: Nanocellulose production: exploring the enzymatic route and residues of pulp and paper industry. Molecules 25(15), 3411 (2020)

    Article  Google Scholar 

  66. Csiszar, E., Kalic, P., Kobol, A., Ferreira, E.P.: The effect of low frequency ultrasound on the production and properties of nanocrystalline cellulose suspensions and films. Ultrason. Sonochem. 31, 473–480 (2016)

    Article  Google Scholar 

  67. Ludueña, L., Fasce, D., Alvarez, V.A., Stefani, P.M.: Nanocellulose from rice husk following alkaline treatment to remove silica. BioResources 6(2), 1440–1453 (2011)

    Article  Google Scholar 

  68. Abraham, E., Thomas, M.S., John, C., Pothen, L.A., Shoseyov, O., Thomas, S.: Green nanocomposites of natural rubber/nanocellulose: membrane transport, rheological and thermal degradation characterisations. Ind. Crops Prod. 51, 415–424 (2013)

    Article  Google Scholar 

  69. Barbash, V.A., Yashchenko, O.V., Vasylieva, O.A.: Preparation and Properties of Nanocellulose from Miscanthus x giganteus. J. Nanomater. 3241968 (2019).

  70. Edi Syafri, S., Mashadi, E.Y., Deswitab, M.A., Hairul Abral, S.M., Sapuane, R.A., Ilyas, A.F.: Effect of sonication time on the thermal stability, moisture absorption, and biodegradation of water hyacinth (Eichhornia crassipes) nanocellulose-filled bengkuang (Pachyrhizus erosus) starch biocomposites. J. Mater. Res. Technol. 8(6), 6223–6231 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a scholarship ID 156 for Ph.D. student N.L from Comisión Sectorial de Investigación Científica (CSIC-Uruguay). The authors are grateful to Javier Villalobos and Sergio Paniagua for their technical support and useful discussions.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lecot Nicole.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicole, L., Rosario, G., Diego, BM. et al. Preparation and Characterization of a Novel Nanocellulose-Derivative as a Potential Radiopharmaceutical Agent. Waste Biomass Valor 13, 173–183 (2022). https://doi.org/10.1007/s12649-021-01495-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01495-x

Keywords

Navigation