Skip to main content

Advertisement

Log in

Management of Digestate and Exhausts from Solid Oxide Fuel Cells Produced in the Dry Anaerobic Digestion Pilot Plant: Microalgae Cultivation Approach

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Microalgae present promising green economy applications in the energy and biorefinery sectors. The work concerns a pilot study on the integration of anaerobic digestion with microalgae cultivation for managing at the same time emissions and digestate from the dry anaerobic treatment of organic waste.

Methods

Biogas produced was used to feed Solid Oxide Fuel Cell after a filtering step for removing toxic compounds. The exhausts and digestate were used for providing carbon and nutrients for microalgae growth. The experimental workflow includes the characterization of both for defining their suitability in the microalgal growth (Chlorella vulgaris) tests.

Results

The exhausts of Solid Oxide Fuel Cells showed relatively stable concentration of CH4 (4–7%) and CO2 (93–96%) and low concentrations (sub ppm(v)) of sulphur, carbonyl and carboxyl, and aromatic compounds and terpenes, making it particularly suited for algae growing as compared with internal combustion engines. The challenging growing conditions are a compromise between carbon recovery and use of digestate. A good microalgae growth has been obtained (22.31 mm3 mL−1 of biovolume corresponding to 151 dry mg L−1 day−1) exploiting ammonia and phosphate from dilute digestate (removal efficiency 94% and 30% respectively) as well as a good carbon recovering (310 mg CO2 L−1 day−1).

Conclusions

Based on our data, the integration of microalgae growth and anaerobic digestion process seems a viable solution to achieve (i) reduced emissions due to carbon recovery; (ii) optimum integrated management of anaerobic digestion waste and (iii) biomass production by low-cost nutrients and carbon.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Prajapati, S.K., Kumar, P., Malik, A., Vijay, V.K.: Bioconversion of algae to methane and subsequent utilization of digestate for algae cultivation: a closed loop bioenergy generation process. Bioresour. Technol. 158, 174–180 (2014). https://doi.org/10.1016/j.biortech.2014.02.023

    Article  Google Scholar 

  2. Zhu, L.: Biorefinery as a promising approach to promote microalgae industry: an innovative framework. Renew. Sustain. Energy Rev. 41, 1376–1384 (2015). https://doi.org/10.1016/j.rser.2014.09.040

    Article  Google Scholar 

  3. Cheng, J., Xu, J., Huang, Y., Li, Y., Zhou, J., Cen, K.: Growth optimisation of microalga mutant at high CO2 concentration to purify undiluted anaerobic digestion effluent of swine manure. Bioresour. Technol. 177, 240–246 (2015). https://doi.org/10.1016/j.biortech.2014.11.099

    Article  Google Scholar 

  4. Xia, A., Murphy, J.D.: Microalgal cultivation in treating liquid digestate from biogas systems. Trends Biotechnol. 34, 264–275 (2016). https://doi.org/10.1016/j.tibtech.2015.12.010

    Article  Google Scholar 

  5. Marcilhac, C., Sialve, B., Pourcher, A.M., Ziebal, C., Bernet, N., Béline, F.: Digestate color and light intensity affect nutrient removal and competition phenomena in a microalgal-bacterial ecosystem. Water Res. 64, 278–287 (2014). https://doi.org/10.1016/j.watres.2014.07.012

    Article  Google Scholar 

  6. Wang, L., Li, Y., Chen, P., Min, M., Chen, Y., Zhu, J., Ruan, R.R.: Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour. Technol. 101, 2623–2628 (2010). https://doi.org/10.1016/j.biortech.2009.10.062

    Article  Google Scholar 

  7. Kumar, M.S., Miao, Z.H., Wyatt, S.K.: Influence of nutrient loads, feeding frequency and inoculum source on growth of Chlorellavulgaris in digested piggery effluent culture medium. Bioresour. Technol. 101, 6012–6018 (2010). https://doi.org/10.1016/j.biortech.2010.02.080

    Article  Google Scholar 

  8. Cheah, W.Y., Show, P.L., Chang, J.S., Ling, T.C., Juan, J.C.: Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour. Technol. 184, 190–201 (2015). https://doi.org/10.1016/j.biortech.2014.11.026

    Article  Google Scholar 

  9. Li, S., Luo, S., Guo, R.: Efficiency of CO2 fixation by microalgae in a closed raceway pond. Bioresour. Technol. 136, 267–272 (2013). https://doi.org/10.1016/j.biortech.2013.03.025

    Article  Google Scholar 

  10. Ryu, H.J., Oh, K.K., Kim, Y.S.: Optimization of the influential factors for the improvement of CO2 utilization efficiency and CO2 mass transfer rate. J. Ind. Eng. Chem. 15, 471–475 (2009). https://doi.org/10.1016/j.jiec.2008.12.012

    Article  Google Scholar 

  11. Franchino, M., Comino, E., Bona, F., Riggio, V.A.: Growth of three microalgae strains and nutrient removal from an agro-zootechnical digestate. Chemosphere 92, 738–744 (2013). https://doi.org/10.1016/j.chemosphere.2013.04.023

    Article  Google Scholar 

  12. Franchino, M., Tigini, V., Varese, G.C., Mussat Sartor, R., Bona, F.: Microalgae treatment removes nutrients and reduces ecotoxicity of diluted piggery digestate. Sci. Total Environ. 569–570, 40–45 (2016). https://doi.org/10.1016/j.scitotenv.2016.06.1

    Article  Google Scholar 

  13. Marcilhac, C., Sialve, B., Pourcher, A.M., Ziebal, C., Bernet, N., Béline, F.: Control of nitrogen behaviour by phosphate concentration during microalgal-bacterial cultivation using digestate. Bioresour. Technol. 175, 224–230 (2015). https://doi.org/10.1016/j.biortech.2014.10.022

    Article  Google Scholar 

  14. Uggetti, E., Sialve, B., Latrille, E., Steyer, J.P.: Anaerobic digestate as substrate for microalgae culture: the role of ammonium concentration on the microalgae productivity. Bioresour. Technol. 152, 437–443 (2014). https://doi.org/10.1016/j.biortech.2013.11.036

    Article  Google Scholar 

  15. Van Den Hende, S., Vervaeren, H., Boon, N.: Flue gas compounds and microalgae: bio-chemical interactions leading to biotechnological opportunities. Biotechnol. Adv. 30, 1405–1424 (2012). https://doi.org/10.1016/j.biotechadv.2012.02.015

    Article  Google Scholar 

  16. Santarelli, M., Briesemeister, L., Gandiglio, M., Herrmann, S., Kuczynski, P., Kupecki, J., Lanzini, A., Llovell, F., Papurello, D., Spliethoff, H., Swiatkowski, B., Torres-Sanglas, J., Vega, L.F.: Carbon recovery and re-utilization (CRR) from the exhaust of a solid oxide fuel cell (SOFC): analysis through a proof-of-concept. J. CO2 Util. 18, 206–221 (2017). https://doi.org/10.1016/j.jcou.2017.01.014

    Article  Google Scholar 

  17. Papurello, D., Lanzini, A., Tognana, L., Silvestri, S., Santarelli, M.: Waste to energy: exploitation of biogas from organic waste in a 500 Wel solid oxide fuel cell (SOFC) stack. Energy 85, 145–158 (2015). https://doi.org/10.1016/j.energy.2015.03.093

    Article  Google Scholar 

  18. Papurello, D., Silvestri, S., Tomasi, L., Belcari, I., Biasioli, F., Santarelli, M.: Biowaste for SOFCs. Energy Procedia 101, 424–431 (2016). https://doi.org/10.1016/j.egypro.2016.11.054

    Article  Google Scholar 

  19. Coppola, G., Papurello, D.: Biogas cleaning: activated carbon regeneration for H2S removal. Clean Technol. (2018). https://doi.org/10.3390/cleantechnol1010004

    Article  Google Scholar 

  20. Papurello, D., Soukoulis, C., Schuhfried, E., Cappellin, L., Gasperi, F., Silvestri, S., Santarelli, M., Biasioli, F.: Monitoring of volatile compound emissions during dry anaerobic digestion of the organic fraction of municipal solid waste by proton transfer reaction time-of-flight mass spectrometry. Bioresour. Technol. 126, 254–265 (2012). https://doi.org/10.1016/j.biortech.2012.09.033

    Article  Google Scholar 

  21. Erickson, M.H., Wallace, H.W., Jobson, B.T.: Quantification of diesel exhaust gas phase organics by a thermal desorption proton transfer reaction mass spectrometer. Atmos. Chem. Phys. Discuss. 12, 5389–5423 (2012). https://doi.org/10.5194/acpd-12-5389-2012

    Article  Google Scholar 

  22. Real­time engine exhaust analysis with ultra­sensitive PTR­TOFMS major reasons customers choose PTR­TOFMS to monitor exhaust emissions: examples of real­time engines emission monitoring [WWW Document]. Spons. by IONICON Anal. (2017)

  23. Ghimenti, S., Lomonaco, T., Bellagambi, F.G., Tabucchi, S., Onor, M., Trivella, M.G., Ceccarini, A., Fuoco, R., Di Francesco, F.: Comparison of sampling bags for the analysis of volatile organic compounds in breath. J. Breath Res. (2015). https://doi.org/10.1088/1752-7155/9/4/047110

    Article  Google Scholar 

  24. Cappellin, L., Loreto, F., Aprea, E., Romano, A., Sánchez del Pulgar, J., Gasperi, F., Biasioli, F.: PTR-MS in Italy: a multipurpose sensor with applications in environmental, agri-food and health science. Sensors (Switzerland) 13, 11923–11955 (2013). https://doi.org/10.3390/s130911923

    Article  Google Scholar 

  25. Biasioli, F., Yeretzian, C., Märk, T.D., Dewulf, J., Van Langenhove, H.: Direct-injection mass spectrometry adds the time dimension to (B)VOC analysis. TrAC Trends Anal. Chem. 30, 1003–1017 (2011). https://doi.org/10.1016/j.trac.2011.04.005

    Article  Google Scholar 

  26. Liu, D., Nyord, T., Rong, L., Feilberg, A.: Real-time quantification of emissions of volatile organic compounds from land spreading of pig slurry measured by PTR-MS and wind tunnels. Sci. Total Environ. 639, 1079–1087 (2018). https://doi.org/10.1016/j.scitotenv.2018.05.149

    Article  Google Scholar 

  27. Papurello, D., Boschetti, A., Silvestri, S., Khomenko, I., Biasioli, F.: Real-time monitoring of removal of trace compounds with PTR-MS: biochar experimental investigation. Renew. Energy (2018). https://doi.org/10.1016/j.renene.2018.02.122

    Article  Google Scholar 

  28. Scaglia, B., Orzi, V., Artola, A., Font, X., Davoli, E., Sanchez, A., Adani, F.: Odours and volatile organic compounds emitted from municipal solid waste at different stage of decomposition and relationship with biological stability. Bioresour. Technol. 102, 4638–4645 (2011). https://doi.org/10.1016/j.biortech.2011.01.016

    Article  Google Scholar 

  29. Chioccioli, M., Hankamer, B., Ross, I.L.: Flow cytometry pulse width data enables rapid and sensitive estimation of biomass dry weight in the microalgae Chlamydomonas reinhardtii and Chlorella vulgaris. PLoS ONE 9, 1–12 (2014). https://doi.org/10.1371/journal.pone.0097269

    Article  Google Scholar 

  30. APHA-AWWA-WPCF, 2018 APHA-AWWA-WPCF: Standard methods for the examination of water and wastewater, 23rd edn. APHA-AWWA-WPCF, Washington (2018)

  31. Ketheesan, B., Nirmalakhandan, N.: Feasibility of microalgal cultivation in a pilot-scale airlift-driven raceway reactor. Bioresour. Technol. 108, 196–202 (2012). https://doi.org/10.1016/j.biortech.2011.12.146

    Article  Google Scholar 

  32. Anjos, M., Fernandes, B.D., Vicente, A.A., Teixeira, J.A., Dragone, G.: Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresour. Technol. 139, 149–154 (2013). https://doi.org/10.1016/j.biortech.2013.04.032

    Article  Google Scholar 

  33. Perez-Garcia, O., De Bashan, L.E., Hernandez, J.P., Bashan, Y.: Efficiency of growth and nutrient uptake from wastewater by heterotrophic, autotrophic, and mixotrophic cultivation of Chlorellavulgaris immobilized with Azospirillum brasilense. J. Phycol. 46, 800–812 (2010). https://doi.org/10.1111/j.1529-8817.2010.00862.x

    Article  Google Scholar 

  34. González-Gonzáles, L.M., Zhou, L., Astals, R., Thomas-Hall, S.R., Eltanahy, E., Pratt, S., Jensen, P.D., Schenk, P.M.: Biogas production coupled to repeat microalgae cultivation using a closed nutrient loop. Bioresour. Technol. 263, 625–630 (2018). https://doi.org/10.1016/j.biortech.2018.05.039

    Article  Google Scholar 

  35. Källqvist, T., Svenson, A.: Assessment of ammonia toxicity in tests with the microalga, Nephroselmis pyriformis. Chlorophyta. Water Res. 37, 477–484 (2003). https://doi.org/10.1016/S0043-1354(02)00361-5

    Article  Google Scholar 

  36. Ledda, C., Idà, A., Allemand, D., Mariani, P., Adani, F.: Production of wild Chlorella sp. cultivated in digested and membrane-pretreated swine manure derived from a full-scale operation plant. Algal Res. 12, 68–73 (2015). https://doi.org/10.1016/j.algal.2015.08.010

    Article  Google Scholar 

  37. Fuchs, W., Drosg, B.: Assessment of the state of the art of technologies for the processing of digestate residue from anaerobic digesters. Water Sci. Technol. 67, 1984–1993 (2013)

    Article  Google Scholar 

  38. Marazzi, F., Sambusiti, C., Monlau, F., Cecere, S.E., Scaglione, D., Barakat, A., Mezzanotte, V., Ficara, E.: A novel option for reducing the optical density of liquid digestate to achieve a more productive microalgal culturing. Algal Res. 24, 19–28 (2017). https://doi.org/10.1016/j.algal.2017.03.014

    Article  Google Scholar 

  39. Passero, M., Cragin, B., Coats, E.R., McDonald, A.G., Feris, K.: Dairy wastewaters for algae cultivation, polyhydroxyalkanote reactor effluent versus anaerobic digester effluent. Bioenerg. Res. 8, 1647–1660 (2015). https://doi.org/10.1007/s12155-015-9619-9

    Article  Google Scholar 

  40. Roushanafshar, M., Luo, J.L., Chuang, K.T., Sanger, A.R.: Effect of hydrogen sulfide on electrochemical oxidation of syngas for SOFC applications. ECS Trans. 35, 2799–2804 (2011). https://doi.org/10.1149/1.3570279

    Article  Google Scholar 

  41. Kupecki, J., Papurello, D., Lanzini, A., Naumovich, Y., Motylinski, K., Blesznowski, M., Santarelli, M.: Numerical model of planar anode supported solid oxide fuel cell fed with fuel containing H2S operated in direct internal reforming mode (DIR-SOFC). Appl. Energy 230, 1573–1584 (2018). https://doi.org/10.1016/j.apenergy.2018.09.092

    Article  Google Scholar 

  42. Sydney, E.B., Sturm, W., de Carvalho, J.C., Soccol, V.T., Larroche, C., Pandey, A., Soccol, C.R.: Potential carbon dioxide fixation by industrially important microalgae. Bioresour. Technol. 101, 5892–5896 (2010)

    Article  Google Scholar 

  43. Sing, S.P., Singh, P.: Effect of CO2 concentration on algal growth: a review. Renew. Sustain. Energy Rev. 38, 172–179 (2014). https://doi.org/10.1016/j.rser.2014.05.0433

    Article  Google Scholar 

  44. Razzak, S.A., Ali, S.A.M., Hossain, M.M., DeLasa, H.: Biological CO2 fixation with production of microalgae in wastewater—a review. Renew. Sustain. Energy Rev. 76, 379–390 (2017). https://doi.org/10.1016/j.rser.2017.02.038

    Article  Google Scholar 

  45. González-Fernández, C., Molinuevo-Salces, B., García-González, M.C.: Nitrogen transformations under different conditions in open ponds by means of microalgae–bacteria consortium treating pig slurry. Bioresour. Technol. 102, 960–966 (2011). https://doi.org/10.1016/j.biortech.2010.09.052

    Article  Google Scholar 

  46. Gilles, S., Gerard, L., Daniel, C., Ngansoumana, B., Carla, I.L., Jacob, N., Allassane, O., Ousséni, O., Xavier, L.: Mutualism between euryhaline tilapia, Sarotherodon melanotheron heudelotii and Chlorella sp.—implications for nano-algal production in warmwater phytoplankton-based recirculating systems. Aquac. Eng. 39, 113–121 (2008)

    Article  Google Scholar 

  47. Pires, J.C.M., Alvim-Ferraz, M.C.M., Martins, F.G., Simoes, M.: Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew. Sustain. Energy Rev. 16, 3043–3053 (2012). https://doi.org/10.1016/j.rser.2012.02.055

    Article  Google Scholar 

  48. an der Ha, D., Bundervoet, B., Verstraete, W., Boon, N.: A sustainable, carbon neutral methane oxidation by a partnership of methane oxidizing communities and microalgae. Water Res. 45, 2845–2854 (2011). https://doi.org/10.1016/j.watres.2011.03.005

    Article  Google Scholar 

  49. Rillo, E., Gandiglio, M., Lanzini, A., Bobba, S., Santarelli, M., Blengini, G.: Life cycle assessment (LCA) of biogas-fed solid oxide fuel cell (SOFC) plant. Energy 126, 585–602 (2017). https://doi.org/10.1016/j.energy.2017.03.041

    Article  Google Scholar 

  50. Evangelisti, S., Lettieri, P., Clift, R., Borello, D.: Distributed generation by energy from waste technology: a life cycle perspective. Process. Saf. Environ. Prot. 93, 161–172 (2014). https://doi.org/10.1016/j.psep.2014.03.008

    Article  Google Scholar 

Download references

Acknowledgements

This research is part of the BWS project carried out with Fondazione Edmund Mach and SOLIDpower SpA. The project was co-funded by Fondazione Cassa di Risparmio di Trento e Rovereto (Grant Number, 2014.0377).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Bona.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bona, D., Papurello, D., Flaim, G. et al. Management of Digestate and Exhausts from Solid Oxide Fuel Cells Produced in the Dry Anaerobic Digestion Pilot Plant: Microalgae Cultivation Approach. Waste Biomass Valor 11, 6499–6514 (2020). https://doi.org/10.1007/s12649-019-00931-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00931-3

Keywords

Navigation