Skip to main content
Log in

Enhanced Lignin Degradation in Tobacco Stalk Composting with Inoculation of White-Rot Fungi Trametes hirsuta and Pleurotus ostreatus

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Tobacco stalk contained large amount of lignin, which is resistant to microbial degradation and limit the composting efficiency during composting. The purpose of this study is to enhance the lignin degradation efficiency, and consequently improve the composting efficiency and product quality.

Methods

Lignin degrading microorganisms (LDMs) were screened and inoculated to tobacco stalk compost, lignin degradation enzyme activities and lignin degradation rate were measured to evaluate the lignin degradation efficiency, other physico-chemical characters were determined as well to evaluate the composting efficiency and product quality.

Results

Two white-rot fungi Trametes hirsuta S13 and Pleurotus ostreatus S18 were screened as LDM according to their high lignin degradation efficiency. After inoculation, lignin peroxidase, manganese peroxidase and laccase were raised from (U g−1) 105.9, 372.9 and 460.68 to 374.7, 1095.6 and 1420.8, respectively. Consequently, lignin degradation rate increased nearly 2-fold (from 23.7 to 41.1%). In addition, organic matter degradation rate was increased from 26.5 to 31.2% with the addition of fungal inoculants. Degree of polymerization, humification index and germination index were also elevated, from 2.0, 17.8% and 108.3% to 3.5, 24.2% and 123.8%, respectively.

Conclusions

In this study, T. hirsuta S13 and P. ostreatus S18 were used as LDM and inoculated to tobacco stalk composting. After inoculation, the lignin degradation rate was increased, with the composting efficiency and the quality of composting product was improved as well.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bernal, M.P., Alburquerque, J.A., Moral, R.: Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 100(22), 5444–5453 (2009). https://doi.org/10.1016/j.biortech.2008.11.027

    Article  Google Scholar 

  2. Zhang, L., Zeng, G., Dong, H., Chen, Y., Zhang, J., Yan, M., Zhu, Y., Yuan, Y., Xie, Y., Huang, Z.: The impact of silver nanoparticles on the co-composting of sewage sludge and agricultural waste: evolutions of organic matter and nitrogen. Bioresour. Technol. 230, 132–139 (2017). https://doi.org/10.1016/j.biortech.2017.01.032

    Article  Google Scholar 

  3. Zeng, G., Zhang, L., Dong, H., Chen, Y., Zhang, J., Zhu, Y., Yuan, Y., Xie, Y., Fang, W.: Pathway and mechanism of nitrogen transformation during composting: functional enzymes and genes under different concentrations of PVP-AgNPs. Bioresour. Technol. 253, 112–120 (2018). https://doi.org/10.1016/j.biortech.2017.12.095

    Article  Google Scholar 

  4. Zhang, L., Zhang, J., Zeng, G., Dong, H., Chen, Y., Huang, C., Zhu, Y., Xu, R., Cheng, Y., Hou, K., Cao, W., Fang, W.: Multivariate relationships between microbial communities and environmental variables during co-composting of sewage sludge and agricultural waste in the presence of PVP-AgNPs. Bioresour. Technol. 261, 10–18 (2018). https://doi.org/10.1016/j.biortech.2018.03.089

    Article  Google Scholar 

  5. Briški, F., Horgas, N., Vuković, M., Gomzi, Z.: Aerobic composting of tobacco industry solid waste—simulation of the process. Clean Technol. Environ. Policy 5(3–4), 295–301 (2003). https://doi.org/10.1007/s10098-003-0218-7

    Article  Google Scholar 

  6. Jurado, M.M., Suarez-Estrella, F., Lopez, M.J., Vargas-Garcia, M.C., Lopez-Gonzalez, J.A., Moreno, J.: Enhanced turnover of organic matter fractions by microbial stimulation during lignocellulosic waste composting. Bioresour. Technol. 186, 15–24 (2015). https://doi.org/10.1016/j.biortech.2015.03.059

    Article  Google Scholar 

  7. Liu, N., Zhou, J., Han, L., Huang, G.: Characterization of lignocellulosic compositions’ degradation during chicken manure composting with added biochar by phospholipid fatty acid (PLFA) and correlation analysis. Sci. Total Environ. 586, 1003–1011 (2017). https://doi.org/10.1016/j.scitotenv.2017.02.081

    Article  Google Scholar 

  8. Wang, H.Y., Fan, B.Q., Hu, Q.X., Yin, Z.W.: Effect of inoculation with Penicillium expansum on the microbial community and maturity of compost. Bioresour. Technol. 102(24), 11189–11193 (2011). https://doi.org/10.1016/j.biortech.2011.07.044

    Article  Google Scholar 

  9. Xu, J., Xu, X., Liu, Y., Li, H., Liu, H.: Effect of microbiological inoculants DN-1 on lignocellulose degradation during co-composting of cattle manure with rice straw monitored by FTIR and SEM. Environ. Prog. Sustain. Energy 35(2), 345–351 (2016). https://doi.org/10.1002/ep.12222

    Article  Google Scholar 

  10. Tuomela, M., Vikman, M., Hatakka, A., Itävaara, M.: Biodegradation of lignin in a compost environment: a review. Bioresour. Technol. 72(2), 169–183 (2000). https://doi.org/10.1016/S0960-8524(99)00104-2

    Article  Google Scholar 

  11. Leonowicz, A., Matuszewska, A., Luterek, J., Ziegenhagen, D., Wojtaś-Wasilewska, M., Cho, N.-S., Hofrichter, M., Rogalski, J.: Biodegradation of lignin by white rot fungi. Fungal Genet. Biol. 27(2), 175–185 (1999). https://doi.org/10.1006/fgbi.1999.1150

    Article  Google Scholar 

  12. Zhang, C., Liu, L., Zeng, G.-M., Huang, D.-L., Lai, C., Huang, C., Wei, Z., Li, N.-J., Xu, P., Cheng, M., Li, F.-L., He, X., Lai, M., He, Y.: Utilization of nano-gold tracing technique: study the adsorption and transmission of laccase in mediator-involved enzymatic degradation of lignin during solid-state fermentation. Biochem. Eng. J. 91, 149–156 (2014). https://doi.org/10.1016/j.bej.2014.08.009

    Article  Google Scholar 

  13. Archibald, F.S.: A new assay for lignin-type peroxidases employing the dye azure B. Appl. Environ. Microbiol. 58(9), 3110 (1992)

    Article  Google Scholar 

  14. Poojary, H., Hoskeri, A., Kaur, A., Mugeraya, G.: Comparative production of ligninolytic enzymes from novel isolates of Basidiomycetes and their potential to degrade textile dyes. Nat. Sci. 10(10), 90–96 (2012)

    Google Scholar 

  15. Nishida, T.: Lignin biodegradation by wood-rotting fungi. I. Screening of lignin degrading fungi. Mokuzai Gakkaishi 34, 530–536 (1988)

    Google Scholar 

  16. Wei, X., Deng, X., Cai, D., Ji, Z., Wang, C., Yu, J., Li, J., Chen, S.: Decreased tobacco-specific nitrosamines by microbial treatment with Bacillus amyloliquefaciens DA9 during the air-curing process of burley tobacco. J. Agric. Food Chem. 62(52), 12701–12706 (2014). https://doi.org/10.1021/jf504084z

    Article  Google Scholar 

  17. Tamura, K., Dudley, J., Nei, M., Kumar, S.: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24(8), 1596–1599 (2007). https://doi.org/10.1093/molbev/msm092

    Article  Google Scholar 

  18. Xin, Y., Huang, J., Deng, M., Zhang, W.: Culture-independent nested PCR method reveals high diversity of actinobacteria associated with the marine sponges Hymeniacidon perleve and Sponge sp. Antonie Van Leeuwenhoek 94(4), 533–542 (2008). https://doi.org/10.1007/s10482-008-9270-y

    Article  Google Scholar 

  19. Lopez, M.J., del Vargas-García, M.C., Suárez-Estrella, F., Nichols, N.N., Dien, B.S., Moreno, J.: Lignocellulose-degrading enzymes produced by the ascomycete Coniochaeta ligniaria and related species: application for a lignocellulosic substrate treatment. Enzyme Microb. Technol. 40(4), 794–800 (2007). https://doi.org/10.1016/j.enzmictec.2006.06.012

    Article  Google Scholar 

  20. Zeng, G.M., Huang, H.L., Huang, D.L., Yuan, X.Z., Jiang, R.Q., Yu, M., Yu, H.Y., Zhang, J.C., Wang, R.Y., Liu, X.L.: Effect of inoculating white-rot fungus during different phases on the compost maturity of agricultural wastes. Process Biochem. 44(4), 396–400 (2009). https://doi.org/10.1016/j.procbio.2008.11.012

    Article  Google Scholar 

  21. Tiquia, S.M., Tam, N.F.Y., Hodgkiss, I.J.: Effects of composting on phytotoxicity of spent pig-manure sawdust litter. Environ. Pollut. 93(3), 249–256 (1996). https://doi.org/10.1016/S0269-7491(96)00052-8

    Article  Google Scholar 

  22. Pollegioni, L., Tonin, F., Rosini, E.: Lignin-degrading enzymes. FEBS J. 282(7), 1190–1213 (2015). https://doi.org/10.1111/febs.13224

    Article  Google Scholar 

  23. Tiquia, S.M., Tam, N.F.Y.: Elimination of phytotoxicity during co-composting of spent pig-manure sawdust litter and pig sludge. Bioresour. Technol. 65(1), 43–49 (1998). https://doi.org/10.1016/S0960-8524(98)00024-8

    Article  Google Scholar 

  24. Tang, J.-C., Shibata, A., Zhou, Q., Katayama, A.: Effect of temperature on reaction rate and microbial community in composting of cattle manure with rice straw. J. Biosci. Bioeng. 104(4), 321–328 (2007). https://doi.org/10.1263/jbb.104.321

    Article  Google Scholar 

  25. Kopcic, N., Vukovic Domanovac, M., Kucic, D., Briski, F.: Evaluation of laboratory-scale in-vessel co-composting of tobacco and apple waste. Waste Manag. 34(2), 323–328 (2014). https://doi.org/10.1016/j.wasman.2013.11.001

    Article  Google Scholar 

  26. Šnajdr, J., Baldrian, P.: Temperature affects the production, activity and stability of ligninolytic enzymes in Pleurotus ostreatus and Trametes versicolor. Folia Microbiol. 52(5), 498–502 (2007). https://doi.org/10.1007/bf02932110

    Article  Google Scholar 

  27. dos Santos, T.C., de Brito, A.R., Bonomo, R.C.F., Pires, A.J.V., Aguiar-Oliveira, E., Silva, T.P., Franco, M.: Statistical optimization of culture conditions and characterization for ligninolytic enzymes produced from Rhizopus sp. using prickly palm cactus husk. Chem. Eng. Commun. 204(1), 55–63 (2017). https://doi.org/10.1080/00986445.2016.1230851

    Article  Google Scholar 

  28. Nakhshiniev, B., Biddinika, M.K., Gonzales, H.B., Sumida, H., Yoshikawa, K.: Evaluation of hydrothermal treatment in enhancing rice straw compost stability and maturity. Bioresour. Technol. 151, 306–313 (2014). https://doi.org/10.1016/j.biortech.2013.10.083

    Article  Google Scholar 

  29. Mahimairaja, S., Bolan, N.S., Hedley, M.J., Macgregor, A.N.: Losses and transformation of nitrogen during composting of poultry manure with different amendments: an incubation experiment. Bioresour. Technol. 47(3), 265–273 (1994). https://doi.org/10.1016/0960-8524(94)90190-2

    Article  Google Scholar 

  30. Riffaldi, R., Levi-Minzi, R., Pera, A., de Bertoldi, M.: Evaluation of compost maturity by means of chemical and microbial analyses. Waste Manag. Res. 4(4), 387–396 (1986)

    Article  Google Scholar 

  31. Zhang, L., Sun, X.: Changes in physical, chemical, and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biochar. Bioresour. Technol. 171, 274–284 (2014). https://doi.org/10.1016/j.biortech.2014.08.079

    Article  Google Scholar 

  32. Iglesias Jiménez, E., Pérez García, V.: Determination of maturity indices for city refuse composts. Agric. Ecosyst. Environ. 38(4), 331–343 (1992). https://doi.org/10.1016/0167-8809(92)90154-4

    Article  Google Scholar 

  33. Tang, J.-C., Maie, N., Tada, Y., Katayama, A.: Characterization of the maturing process of cattle manure compost. Process Biochem. 41(2), 380–389 (2006). https://doi.org/10.1016/j.procbio.2005.06.022

    Article  Google Scholar 

  34. Aggelis, G., Ehaliotis, C., Nerud, F., Stoychev, I., Lyberatos, G., Zervakis, G.I.: Evaluation of white-rot fungi for detoxification and decolorization of effluents from the green olive debittering process. Appl. Microbiol. Biotechnol. 59(2–3), 353–360 (2002). https://doi.org/10.1007/s00253-002-1005-9

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Program on Key Basic Research Project (973 Program, No. 2015CB150505), the Science and Technology Program of Wuhan (20160201010086), and the Key Project of China National Tobacco Corporation Hubei Company.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Yu or Xin Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 346 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Yuan, H., Yang, Y. et al. Enhanced Lignin Degradation in Tobacco Stalk Composting with Inoculation of White-Rot Fungi Trametes hirsuta and Pleurotus ostreatus. Waste Biomass Valor 11, 3525–3535 (2020). https://doi.org/10.1007/s12649-019-00692-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00692-z

Keywords

Navigation