Skip to main content
Log in

Sustainable Biocomposites from Poly(butylene succinate) and Apple Pomace: A Study on Compatibilization Performance

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Sustainable biocomposites from biobased poly(butylene succinate) (BioPBS) and apple pomace (AP) were fabricated using melt extrusion followed by injection molding processing. When used as a filler, the AP can be diverted from waste into value added products. For the manufacture of the composites, in situ manufactured Bio-PBS grafted maleic anhydride (MA-g-BioPBS) was used in order to increase interfacial adhesion between the two phases. Thus, comparisons were made between compatibilized and uncompatibilized composites. The mechanical and dynamic mechanical properties, morphology, as well as the crystallization phenomena were investigated for both composites at different filler contents (20, 30, 40, and 50 wt%). Overall, the tensile and flexural moduli and the flexural strength were significantly enhanced with respect to the neat polymer, with optimal values achieved with 40 wt% of AP and 3 wt% of MA-g-BioPBS. Although the tensile stress was drastically reduced in uncompatibilized composites, it was recovered with the addition of the coupling agent. Furthermore, it was interesting to find out an increase of ~ 150% in the impact strength in uncompatibilized samples with respect to the neat polymer, confirming the ability of AP to act as reinforcing filler. Increases were found in the degree of crystallinity as well as with the melting temperature with the presence of MA-g-BioPBS.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mohanty, A.K., Misra, M., Zarrinbakhsh, N., Wang, T., Rodriguez, A., Vivekanandhan, S.: WO 2016/138593 Al: biodegradable polymer-based biocomposites with tailored properties and method of making those. https://patentimages.storage.googleapis.com/04/30/0f/da29cd21cb0c6b/WO2016138593A1.pdf (2016). Accessed 11 June 2018

  2. Zarrinbakhsh, N., Wang, T., Rodriguez-Uribe, A., Misra, M., Mohanty, A.K.: Characterization of wastes and coproducts from the coffee industry for composite material production. BioResources 11, 7637–7653 (2016)

    Article  Google Scholar 

  3. Muthuraj, R., Misra, M., Mohanty, A.K.: Injection Molded Sustainable Biocomposites From Poly(butylene succinate) Bioplastic and Perennial Grass. ACS Sustain. Chem. Eng. 3, 2767–2776 (2015)

    Article  Google Scholar 

  4. Zarrinbakhsh, N., Misra, M., Mohanty, A.K.: Biodegradable green composites from distillers dried grains with solubles (DDGS) and a polyhydroxy(butyrate-co-valerate) (PHBV)-based bioplastic. Macromol. Mater. Eng. 296, 1035–1045 (2011)

    Article  Google Scholar 

  5. Julson, J.L., Subbarao, G., Stokke, D.D., Gieselman, H.H., Muthukumarappan, K.: Mechanical properties of biorenewable fiber/plastic composites. J. Appl. Polym. Sci. 93, 2484–2493 (2004)

    Article  Google Scholar 

  6. El Hajj, N., Seif, S., Saliba, K., Zgheib, N.: Recycling of Plastic mixture wastes as carrier resin for short glass fiber composites. Waste and Biomass Valoriz. https://doi.org/10.1007/s12649-018-0446-z (2018)

    Article  Google Scholar 

  7. Dahy, H.: Efficient fabrication of sustainable building products from annually generated non-wood cellulosic fibres and bioplastics with improved flammability resistance. Waste Biomass Valoriz. https://doi.org/10.1007/s12649-017-0135-3 (2017)

    Article  Google Scholar 

  8. McKinlay, J.B., Vieille, C., Zeikus, J.G.: Prospects for a bio-based succinate industry. Appl. Microbiol. Biotechnol. 76, 727–740 (2007)

    Article  Google Scholar 

  9. Babu, R.P., O’Connor, K., Seeram, R.: Current progress on bio-based polymers and their future trends. Prog. Biomater. 2, 8 (2013)

    Article  Google Scholar 

  10. Gouw, V.P., Jung, J., Simonsen, J., Zhao, Y.: Fruit pomace as a source of alternative fibers and cellulose nanofiber as reinforcement agent to create molded pulp packaging boards. Compos. Part A Appl. Sci. Manuf. 99, 48–57 (2017)

    Article  Google Scholar 

  11. Zacharof, M.-P.: Grape winery waste as feedstock for bioconversions: applying the biorefinery concept. Waste Biomass Valoriz. 8, 1011–1025 (2017)

    Article  Google Scholar 

  12. Rabetafika, H.N., Bchir, B., Blecker, C., Richel, A.: Fractionation of apple by-products as source of new ingredients: current situation and perspectives. Trends Food Sci. Technol. 40, 99–114 (2014)

    Article  Google Scholar 

  13. Dhillon, G.S., Kaur, S., Brar, S.K.: Perspective of apple processing wastes as low-cost substrates for bioproduction of high value products: a review. Renew. Sustain. Energy Rev. 27, 789–805 (2013)

    Article  Google Scholar 

  14. Perussello, C.A., Zhang, Z., Marzocchella, A., Tiwari, B.K.: Valorization of apple pomace by extraction of valuable compounds. Compr. Rev. Food Sci. Food Saf. 16, 776–796 (2017)

    Article  Google Scholar 

  15. Vendruscolo, F., Albuquerque, P.M., Streit, F., Esposito, E., Ninow, J.L.: Apple pomace: a versatile substrate for biotechnological applications. Crit. Rev. Biotechnol 28, 1–12 (2008)

    Article  Google Scholar 

  16. Wang, Z., Sun, J., Chen, F., Liao, X., Hu, X.: Mathematical modelling on thin layer microwave drying of apple pomace with and without hot air pre-drying. J. Food Eng. 80, 536–544 (2007)

    Article  Google Scholar 

  17. Kuvvet, C., Uzuner, S., Cekmecelioglu, D.: ·: Improvement of pectinase production by co-culture of bacillus spp. using apple pomace as a carbon source. Waste Biomass Valoriz. 1, 1–9 (2017)

    Google Scholar 

  18. Paraman, I., Sharif, M.K., Supriyadi, S., Rizvi, S.S.H.: Agro-food industry byproducts into value-added extruded foods. Food Bioprod. Process. 96, 78–85 (2015)

    Article  Google Scholar 

  19. Shalini, R., Gupta, D.K.: Utilization of pomace from apple processing industries: a review. J. Food Sci. Technol. 47, 365–371 (2010)

    Article  Google Scholar 

  20. Gaikwad, K.K., Lee, J.Y., Lee, Y.S.: Development of polyvinyl alcohol and apple pomace bio-composite film with antioxidant properties for active food packaging application. J. Food Sci. Technol. 53, 1608–1619 (2016)

    Article  Google Scholar 

  21. Nagarajan, V., Misra, M., Mohanty, A.K.: New engineered biocomposites from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/poly(butylene adipate-co-terephthalate) (PBAT) blends and switchgrass: fabrication and performance evaluation. Ind. Crops Prod. 42, 461–468 (2013)

    Article  Google Scholar 

  22. Muthuraj, R., Misra, M., Mohanty, A.K.: Biodegradable poly(butylene succinate) and poly(butylene adipate-co-terephthalate) blends: reactive extrusion and performance evaluation. J. Polym. Environ. 22, 336–349 (2014)

    Article  Google Scholar 

  23. Xu, J., Guo, B.H.: Poly(butylene succinate) and its copolymers: research, development and industrialization. Biotechnol. J. 5, 1149–1163 (2010)

    Article  Google Scholar 

  24. The Associated Press. Heinz, Ford aim to make car parts from tomato skins | CBC News. https://www.cbc.ca/news/technology/heinz-ford-aim-to-make-car-parts-from-tomato-skins-1.2671904 (2014). Accessed 22 August 2017

  25. Saccani, A., Sisti, L., Manzi, S., Fiorini, M., Civile, I., Terracini, V.: PLA Composites Formulated Recycling Residuals of the Winery Industry. Polym. Compos. https://doi.org/10.1002/pc.24870 (2018)

    Article  Google Scholar 

  26. Chiellini, E., Cinelli, P., Chiellini, F., Imam, S.H.: Environmentally degradable bio-based polymeric blends and composites. Macromol. Biosci. 4, 218–231 (2004)

    Article  Google Scholar 

  27. Frollini, E., Bartolucci, N., Sisti, L., Celli, A.: Poly(butylene succinate) reinforced with different lignocellulosic fibers. Ind. Crops Prod. 45, 160–169 (2013)

    Article  Google Scholar 

  28. Nabar, Y., Raquez, J.M., Dubois, P., Narayan, R.: Production of starch foams by twin-screw extrusion: Effect of maleated poly(butylene adipate-co-terephthalate) as a compatibilizer. Biomacromolecules. 6, 807–817 (2005)

    Article  Google Scholar 

  29. Tessier, R., Lafranche, E., Krawczak, P.: Development of novel melt-compounded starch-grafted polypropylene/polypropylene-grafted maleic anhydride/organoclay ternary hybrids. Express Polym. Lett. 6, 937–952 (2012)

    Article  Google Scholar 

  30. Papageorgiou, G.Z., Bikiaris, D.N.: Crystallization and melting behavior of three biodegradable poly(alkylene succinates). A comparative study. Polymer 46, 12081–12092 (2005)

    Article  Google Scholar 

  31. Yang, S.-L., Wu, Z.-H., Yang, W., Yang, M.-B.: Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polym. Test. 27, 957–963 (2008)

    Article  Google Scholar 

  32. Kim, H.S., Kim, H.J.: Enhanced hydrolysis resistance of biodegradable polymers and bio-composites. Polym. Degrad. Stab. 93, 1544–1553 (2008)

    Article  Google Scholar 

  33. Ferreira, A.S., Nunes, C., Castro, A., Ferreira, P., Coimbra, M.A.: Influence of grape pomace extract incorporation on chitosan films properties. Carbohydr. Polym. 113, 490–499 (2014)

    Article  Google Scholar 

  34. Gowman, A., Wang, T., Rodriguez-Uribe, A., Mohanty, A.K., Misra, M.: Bio-poly(butylene succinate) and Its composites with grape pomace: mechanical performance and thermal properties. ACS Omega 3, 15205–15216 (2018)

    Article  Google Scholar 

  35. Phua, Y.J., Chow, W.S., Mohd Ishak, Z.A.: Reactive processing of maleic anhydride-grafted poly(butylene succinate) and the compatibilizing effect on poly(butylene succinate) nanocomposites. Express Polym. Lett. 7, 340–354 (2013)

    Article  Google Scholar 

  36. Sclavons, M., Laurent, M., Devaux, J., Carlier, V.: Maleic anhydride-grafted polypropylene: FTIR study of a model polymer grafted by ene-reaction. Polymer 46, 8062–8067 (2005)

    Article  Google Scholar 

  37. Sclavons, M., Franquinet, P., Carlier, V., Verfaillie, G., Fallais, I., Legras, R., Laurent, M., Thyrion, F.C.: Quantification of the maleic anhydride grafted onto polypropylene by chemical and viscosimetric titrations, and FTIR spectroscopy. Polymer 41, 1989–1999 (2000)

    Article  Google Scholar 

  38. Lee, S.H., Cho, E.N.R., Jeon, S.H., Youn, J.R.: Rheological and electrical properties of polypropylene composites containing functionalized multi-walled carbon nanotubes and compatibilizers. Carbon N. Y. 45, 2810–2822 (2007)

    Article  Google Scholar 

  39. Nanda, M.R., Misra, M., Mohanty, A.K.: Performance evaluation of biofibers and their hybrids as reinforcements in bioplastic composites. Macromol. Mater. Eng. 298, 779–788 (2013)

    Article  Google Scholar 

  40. Zhang, Y., Yu, C., Chu, P.K., Lv, F., Zhang, C., Ji, J., Zhang, R., Wang, H.: Mechanical and thermal properties of basalt fiber reinforced poly(butylene succinate) composites. Mater. Chem. Phys. 133, 845–849 (2012)

    Article  Google Scholar 

  41. Chattopadhyay, S.K., Khandal, R.K., Uppaluri, R., Ghoshal, A.K.: Bamboo fiber reinforced polypropylene composites and their mechanical, thermal, and morphological properties. J. Appl. Polym. Sci. 119, 1619–1626 (2011)

    Article  Google Scholar 

  42. Sahoo, S., Misra, M., Mohanty, A.K.: Enhanced properties of lignin-based biodegradable polymer composites using injection moulding process. Compos. Part A Appl. Sci. Manuf. 42, 1710–1718 (2011)

    Article  Google Scholar 

  43. Muthuraj, R., Misra, M., Mohanty, A.K.: Biodegradable biocomposites from poly(butylene adipate-co-terephthalate) and miscanthus: preparation, compatibilization, and performance evaluation. J. Appl. Polym. Sci. 134, 45448 (2017)

    Article  Google Scholar 

  44. Lee, S.H., Wang, S.: Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Compos. Part A Appl. Sci. Manuf. 37, 80–91 (2006)

    Article  Google Scholar 

  45. Mofokeng, J.P., Luyt, A.S., Tábi, T., Kovács, J.: Comparison of injection moulded, natural fibre-reinforced composites with PP and PLA as matrices. J. Thermoplast. Compos. Mater. 25, 927–948 (2012)

    Article  Google Scholar 

  46. Luo, S., Netravali, A.N.: Interfacial and mechanical properties of environment-friendly “green” composites made from pineapple fibers and poly (hydroxybutyrate-co-valerate) resin. J. Mater. Sci. 34, 3709–3719 (1999)

    Article  Google Scholar 

  47. Nagarajan, V., Mohanty, A.K., Misra, M.: Sustainable green composites: value addition to agricultural residues and perennial grasses. ACS Sustain. Chem. Eng. 1, 325–333 (2013)

    Article  Google Scholar 

  48. Mechanical: and Thermal properties of poly(butylene succinate)/plant fiber biodegradable composites. J. Appl. Polym. Sci. 115, 3559–3567 (2008)

    Google Scholar 

  49. Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C.: Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 86, 1781–1788 (2007)

    Article  Google Scholar 

  50. Kumar, A., Wang, L., Dzenis, Y.A., Jones, D.D., Hanna, M.A.: Thermogravimetric characterization of corn stover as gasification and pyrolysis feedstock. Biomass Bioenergy. 32, 460–467 (2008)

    Article  Google Scholar 

  51. Zarrinbakhsh, N., Mohanty, A.K., Misra, M.: Fundamental studies on water-washing of the corn ethanol coproduct (DDGS) and its characterization for biocomposite applications. Biomass Bioenergy. 55, 251–259 (2013)

    Article  Google Scholar 

  52. Wang, G., Guo, B., Xu, J., Li, R.: Rheology, Crystallization Behaviors, and Thermal Stabilities of Poly(butylene succinate)/Pristine Multiwalled Carbon Nanotube Composites Obtained by Melt Compounding. J. Appl. Polym. Sci. 121, 59–67 (2011)

    Article  Google Scholar 

  53. Lozano, K., Bonilla-Rios, J., Barrera, E.V.: A study on nanofiber-reinforced thermoplastic composites (II): Investigation of the mixing rheology and conduction properties. J. Appl. Polym. Sci. 80, 1162–1172 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to: (i) the Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA, Canada)—University of Guelph, Bioeconomy Industrial Uses Research Program Theme Project # 030177; and (ii) the Natural Sciences and Engineering Research Council (NSERC, Canada), Canada Discovery Grants Project # 400320 for their financial support to carry out this research. A special thanks to Martin’s Family Fruit Farm Ltd. (1420 Lobsinger Line, Waterloo, Ontario) for donating apple pomace samples.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manjusri Misra or Amar K. Mohanty.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Picard, M.C., Rodriguez-Uribe, A., Thimmanagari, M. et al. Sustainable Biocomposites from Poly(butylene succinate) and Apple Pomace: A Study on Compatibilization Performance. Waste Biomass Valor 11, 3775–3787 (2020). https://doi.org/10.1007/s12649-019-00591-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00591-3

Keywords

Navigation