Skip to main content

Advertisement

Log in

Pervaporative Separation of Mixed Volatile Fatty Acids: A Study Towards Integrated VFA Production and Separation

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Volatile fatty acids (VFAs) are heavily synthesized from fossil-based processes regardless of the scarcity of non-renewable resources. Anaerobic fermentation of organic wastes can be an alternative way to produce VFAs, however the recovery of VFAs from fermentation broths is the bottleneck of the resource recovery. In this study, membrane contactor based pervaporation system was used to recover VFAs through polytetrafluoroethylene (PTFE), tridodecylamine (TDDA) filled PTFE, and composite silicone rubber/PTFE membranes. Synthetic VFA mixtures were used as feed solutions representing fermentation broths composed of acetic, propionic, butyric, valeric, and caproic acids. Effect of temperature on recovery of VFAs through PTFE and TDDA filled PTFE liquid membrane was investigated at 21 °C, 35 °C, and 55 °C. In addition, effect of increased membrane thickness on VFA recovery efficiency of composite membranes was assessed at 35 °C. The results of the study revealed that TDDA filled PTFE liquid membrane resulted in significantly higher VFA flux, separation factor, permeance, and selectivity compared to that of PTFE membrane, which was presumably due to strong ion-pair formation between TDDA and carboxylic acids. The highest permeance of VFAs were observed at 35 °C through TDDA filled PTFE liquid membrane. Membrane thickness significantly influenced the VFA separation efficiency in composite membranes. The highest membrane selectivity of VFAs was observed in a composite membrane with 190.2 ± 4.8 µm thickness. The results of the study are significant in terms of the development of integrated fermentation and membrane-based VFA separation applications, which will hopefully decrease the reliance on fossil-fuels for VFA production.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Agler, M.T., Wrenn, B.A., Zinder, S.H., Angenent, L.T.: Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol. 29(2), 70–78 (2011). https://doi.org/10.1016/j.tibtech.2010.11.006

    Article  Google Scholar 

  2. Bolzonella, D., Fatone, F., Pavan, P., Cecchi, F.: Anaerobic fermentation of organic municipal solid wastes for the production of soluble organic compounds. Ind. Eng. Chem. Res. 44(10), 3412–3418 (2005). https://doi.org/10.1021/ie048937m

    Article  Google Scholar 

  3. Calli, B., Schoenmaekers, K., Vanbroekhoven, K., Diels, L.: Dark fermentative H-2 production from xylose and lactose—effects of on-line pH control. Int. J. Hydrog. Energy. 33(2), 522–530 (2008). https://doi.org/10.1016/j.ijhydene.2007.10.012

    Article  Google Scholar 

  4. Bakonyi, P., Kumar, G., Kook, L., Toth, G., Rozsenberszki, T., Belafi-Bako, K., Nemestothy, N.: Microbial electrohydrogenesis linked to dark fermentation as integrated application for enhanced biohydrogen production: a review on process characteristics, experiences and lessons. Bioresour. Technol. 251, 381–389 (2018). https://doi.org/10.1016/j.biortech.2017.12.064

    Article  Google Scholar 

  5. Rozsenberszki, T., Kook, L., Hutvagner, D., Nemestothy, N., Belafi-Bako, K., Bakonyi, P., Kurdi, R., Sarkady, A.: Comparison of anaerobic degradation processes for bioenergy generation from liquid fraction of pressed solid waste. Waste Biomass Valoriz. 6(4), 465–473 (2015). https://doi.org/10.1007/s12649-015-9379-y

    Article  Google Scholar 

  6. De Gioannis, G., Muntoni, A., Polettini, A., Pomi, R.: A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. Waste Manage. 33(6), 1345–1361 (2013). https://doi.org/10.1016/j.wasman.2013.02.019

    Article  Google Scholar 

  7. Holtzapple, M.T., Granda, C.B.: Carboxylate platform: the MixAlco process part 1: comparison of three biomass conversion platforms. Appl. Biochem. Biotechnol. 156(1), 95–106 (2009). https://doi.org/10.1007/s12010-008-8466-y

    Article  Google Scholar 

  8. Holtzapple, M., Lonkar, S., Granda, C.: Producing biofuels via the carboxylate platform. Chem. Eng. Prog. 111(3), 52–57 (2015)

    Google Scholar 

  9. Ijmker, H.M., Gramblička, M., Kersten, S.R.A., van der Ham, A.G.J., Schuur, B.: Acetic acid extraction from aqueous solutions using fatty acids. Sep. Purif. Technol. 125, 256–263 (2014). https://doi.org/10.1016/j.seppur.2014.01.050

    Article  Google Scholar 

  10. Gryta, M., Barancewicz, M.: Separation of volatile compounds from fermentation broth by membrane distillation. Pol. J. Chem. Technol. 13(3), 56–60 (2011). https://doi.org/10.2478/v10026-011-0038-1

    Article  Google Scholar 

  11. Yesil, H., Tugtas, A.E., Bayrakdar, A., Calli, B.: Anaerobic fermentation of organic solid wastes: volatile fatty acid production and separation. Water Sci. Technol. 69(10), 2132–2138 (2014). https://doi.org/10.2166/wst.2014.132

    Article  Google Scholar 

  12. Lim, S.-J., Choi, D.W., Lee, W.G., Kwon, S., Chang, H.N.: Volatile fatty acids production from food wastes and its application to biological nutrient removal. Bioprocess Eng. 22(6), 543–545 (2000)

    Google Scholar 

  13. Freguia, S., Teh, E.H., Boon, N., Leung, K.M., Keller, J., Rabaey, K.: Microbial fuel cells operating on mixed fatty acids. Bioresour. Technol. 101(4), 1233–1238 (2010)

    Google Scholar 

  14. Tao, B., Passanha, P., Kumi, P., Wilson, V., Jones, D., Esteves, S.: Recovery and concentration of thermally hydrolysed waste activated sludge derived volatile fatty acids and nutrients by microfiltration, electrodialysis and struvite precipitation for polyhydroxyalkanoates production. Chem. Eng. J. 295, 11–19 (2016). https://doi.org/10.1016/j.cej.2016.03.036

    Article  Google Scholar 

  15. Eggeman, T., Verser, D.: Recovery of organic acids from fermentation broths. Appl. Biochem. Biotechnol. 121, 605–618 (2005)

    Google Scholar 

  16. Silva, F.C., Serafim, L.S., Nadais, H., Arroja, L., Capela, I.: Acidogenic fermentation towards valorisation of organic waste streams into volatile fatty acids. Chem. Biochem. Eng. Q. 27(4), 467–476 (2013)

    Google Scholar 

  17. Van Baelen, D., Van der Bruggen, B., Van den Dungen, K., Degreve, J., Vandecasteele, C.: Pervaporation of water–alcohol mixtures and acetic acid–water mixtures. Chem. Eng. Sci. 60(6), 1583–1590 (2005). https://doi.org/10.1016/j.ces.2004.10.030

    Article  Google Scholar 

  18. Horiuchi, J.I., Shimizu, T., Tada, K., Kanno, T., Kobayashi, M.: Selective production of organic acids in anaerobic acid reactor by pH control. Bioresour. Technol. 82(3), 209–213 (2002)

    Google Scholar 

  19. Argelier, S., Delgenes, J.P., Moletta, R.: Design of acidogenic reactors for the anaerobic treatment of the organic fraction of solid food waste. Bioprocess. Biosyst. Eng. 18(4), 309–315 (1998)

    Google Scholar 

  20. Cheng, F., Li, M., Li, D., Chen, L., Jiang, W., Kitamura, Y., Li, B.: Volatile organic acid adsorption and cation dissociation by porphyritic andesite for enhancing hydrolysis and acidogenesis of solid food wastes. Bioresour. Technol. 101(14), 5076–5083 (2010)

    Google Scholar 

  21. Zoetemeyer, R.J., Matthijsen, A.J.C.M., Cohen, A., Boelhouwer, C.: Product inhibition in the acid forming stage of the anaerobic digestion process. Water Res. 16(5), 633–639 (1982)

    Google Scholar 

  22. Yang, S.T., White, S.A., Hsu, S.T.: Extraction of carboxylic acids with tertiary and quaternary amines: effect of pH. Ind. Eng. Chem. Res. 30(6), 1335–1342 (1991). https://doi.org/10.1021/ie00054a040

    Article  Google Scholar 

  23. Straathof, A.J.J.: The proportion of downstream costs in fermentative production processes. In: Moo-Young, M. (ed.) Comprehensive Biotechnology, vol. 2. pp. 811–814. Elsevier, Amsterdam (2011)

    Google Scholar 

  24. López-Garzón, C.S., Straathof, A.J.J.: Recovery of carboxylic acids produced by fermentation. Biotechnol. Adv. 32(5), 873–904 (2014)

    Google Scholar 

  25. Dionysiou, D.D., Tsianou, M., Botsaris, G.D.: Investigation of the conditions for the production of calcium magnesium acetate (CMA) road deicer in an extractive crystallization process. Cryst. Res. Technol. 35(9), 1035–1049 (2000)

    Google Scholar 

  26. Alkaya, E., Kaptan, S., Ozkan, L., Uludag-Demirer, S., Demirer, G.N.: Recovery of acids from anaerobic acidification broth by liquid-liquid extraction. Chemosphere 77(8), 1137–1142 (2009)

    Google Scholar 

  27. Bekatorou, A., Dima, A., Tsafrakidou, P., Boura, K., Lappa, K., Kandylis, P., Pissaridi, K., Kanellaki, M., Koutinas, A.A.: Downstream extraction process development for recovery of organic acids from a fermentation broth. Bioresour. Technol. 220, 34–37 (2016). https://doi.org/10.1016/j.biortech.2016.08.039

    Article  Google Scholar 

  28. Reyhanitash, E., Zaalberg, B., Kersten, S.R.A., Schuur, B.: Extraction of volatile fatty acids from fermented wastewater. Sep. Purif. Technol. 161, 61–68 (2016). https://doi.org/10.1016/j.seppur.2016.01.037

    Article  Google Scholar 

  29. Garcia, A.A.: Strategies for the recovery of chemicals from fermentation—a review of the use of polymeric adsorbents. Biotechnol. Progr. 7(1), 33–42 (1991)

    MathSciNet  Google Scholar 

  30. Saito, T., Yoshino, Y., Kawanabe, H., Sasaki, M., Goto, M.: Adsorptive removal of organic acids and furans from hydrothermal treatment process of biomass. Sep. Sci. Technol. 44(12), 2761–2773 (2009). https://doi.org/10.1080/01496390903014409

    Article  Google Scholar 

  31. Wang, Q.H., Cheng, G.S., Sun, X.H., Jin, B.: Recovery of lactic acid from kitchen garbage fermentation broth by fourcompartment configuration electrodialyzer. Process Biochem. 41(1), 152–158 (2006)

    Google Scholar 

  32. Cerrillo, M., Viñas, M., Bonmatí, A.: Removal of volatile fatty acids and ammonia recovery from unstable anaerobic digesters with a microbial electrolysis cell. Bioresour. Technol. 219, 348–356 (2016). https://doi.org/10.1016/j.biortech.2016.07.103

    Article  Google Scholar 

  33. Scoma, A., Varela-Corredor, F., Bertin, L., Gostoli, C., Bandini, S.: Recovery of VFAs from anaerobic digestion of dephenolized olive mill wastewaters by electrodialysis. Sep. Purif. Technol. 159, 81–91 (2016). https://doi.org/10.1016/j.seppur.2015.12.029

    Article  Google Scholar 

  34. Zhang, Y., Angelidaki, I.: Bioelectrochemical recovery of waste-derived volatile fatty acids and production of hydrogen and alkali. Water Res. 81, 188–195 (2015). https://doi.org/10.1016/j.watres.2015.05.058

    Article  Google Scholar 

  35. Longo, S., Katsou, E., Malamis, S., Frison, N., Renzi, D., Fatone, F.: Recovery of volatile fatty acids from fermentation of sewage sludge in municipal wastewater treatment plants. Bioresour. Technol. 175, 436–444 (2015). https://doi.org/10.1016/j.biortech.2014.09.107

    Article  Google Scholar 

  36. Zacharof, M.P., Lovitt, R.W.: Recovery of volatile fatty acids (VFA) from complex waste effluents using membranes. Water Sci. Technol. 69(3), 495–503 (2014). https://doi.org/10.2166/wst.2013.717

    Article  Google Scholar 

  37. Zacharof, M.P., Mandale, S.J., Williams, P.M., Lovitt, R.W.: Nanofiltration of treated digested agricultural wastewater for recovery of carboxylic acids. J. Clean Prod. 112, 4749–4761 (2016). https://doi.org/10.1016/j.jclepro.2015.07.004

    Article  Google Scholar 

  38. Thongsukmak, A., Sirkar, K.K.: Pervaporation membranes highly selective for solvents present in fermentation broths. J. Membr. Sci. 302(1–2), 45–58 (2007). https://doi.org/10.1016/j.memsci.2007.06.013

    Article  Google Scholar 

  39. Qin, Y.J., Sheth, J.P., Sirkar, K.K.: Pervaporation membranes that are highly selective for acetic acid over water. Ind. Eng. Chem. Res. 42(3), 582–595 (2003). https://doi.org/10.1021/ie020414w

    Article  Google Scholar 

  40. Choudhari, S.K., Cerrone, F., Woods, T., Joyce, K., O’ Flaherty, V., O’ Connor, K., Babu, R.: Pervaporation separation of butyric acid from aqueous and anaerobic digestion (AD) solutions using PEBA based composite membranes. J. Ind. Eng. Chem. 23, 163–170 (2015)

    Google Scholar 

  41. Aydin, S., Yesil, H., Tugtas, A.E.: Recovery of mixed volatile fatty acids from anaerobically fermented organic wastes by vapor permeation membrane contactors. Bioresour. Technol. 250, 548–555 (2018). https://doi.org/10.1016/j.biortech.2017.11.061

    Article  Google Scholar 

  42. Tugtas, A.E.: Recovery of volatile fatty acids via membrane contactor using flat membranes: experimental and theoretical analysis. Waste Manage. 34(7), 1171–1178 (2014). https://doi.org/10.1016/j.wasman.2014.01.020

    Article  Google Scholar 

  43. Vane, L.M.: A review of pervaporation for product recovery from biomass fermentation processes. J. Chem. Technol. Biotechnol. 80(6), 603–629 (2005)

    Google Scholar 

  44. Jullok, N., Darvishmanesh, S., Luis, P., Van der Bruggen, B.: The potential of pervaporation for separation of acetic acid and water mixtures using polyphenylsulfone membranes. Chem. Eng. J. 175, 306–315 (2011). https://doi.org/10.1016/j.cej.2011.09.109

    Article  Google Scholar 

  45. Lu, S.-Y., Chiu, C.-P., Huang, H.-Y.: Pervaporation of acetic acid/water mixtures through silicalite filled polydimethylsiloxane membranes. J. Membr. Sci. 176(2), 159–167 (2000). https://doi.org/10.1016/s0376-7388(00)00434-8 doi

    Article  Google Scholar 

  46. Wijmans, J.G., Baker, R.W.: The solution-diffusion model: a review. J. Membr. Sci. 107(1–2), 1–21 (1995). https://doi.org/10.1016/0376-7388(95)00102-I

    Article  Google Scholar 

  47. Feng, X., Huang, R.Y.M.: Estimation of activation energy for permeation in pervaporation processes. J. Membr. Sci. 118(1), 127–131 (1996)

    Google Scholar 

  48. Huang, J., Meagher, M.M.: Pervaporative recovery of n-butanol from aqueous solutions and ABE fermentation broth using thin-film silicalite-filled silicone composite membranes. J. Membr. Sci. 192(1–2), 231–242 (2001)

    Google Scholar 

  49. Keleser, S., Salt, Y., Hasanoglu, A., Ozkan, S., Dincer, S.: Desorption of ethylacetate–water mixture by using crosslinked polydimethylsiloxane membrane. Desalination 200(1), 44–45 (2006)

    Google Scholar 

  50. Huang, S.-C., Ball, I.J., Kaner, R.B.: Polyaniline membranes for pervaporation of carboxylic acids and water. Macromolecules 31(16), 5456–5464 (1998)

    Google Scholar 

  51. Kusumocahyo, S.P., Sano, K., Sudoh, M., Kensaka, M.: Water permselectivity in the pervaporation of acetic acid-water mixture using crosslinked poly(vinyl alcohol) membranes. Sep. Purif. Technol. 18(2), 141–150 (2000). https://doi.org/10.1016/s1383-5866(99)00060-x

    Article  Google Scholar 

  52. Li, L., Xiao, Z., Zhang, Z., Tan, S.: Pervaporation of acetic acid/water mixtures through carbon molecular sieve-filled PDMS membranes. Chem. Eng. J. 97, 83–86 (2004)

    Google Scholar 

  53. Kertes, A.S., King, C.J.: Extraction chemistry of fermentation product carboxylic acids. Biotechnol. Bioeng. 28(2), 269–282 (1986)

    Google Scholar 

  54. Tamada, J.A., King, C.J.: Extraction of carboxylic-acids with amine extractants. 3. Effect of temperature, water coextraction, and process considerations Ind. Eng. Chem. Res. 29(7), 1333–1338 (1990). https://doi.org/10.1021/ie00103a037

    Article  Google Scholar 

  55. Dong, Z., Liu, G., Liu, S., Liu, Z., Jin, W.: High performance ceramic hollow fiber supported PDMS composite pervaporation membrane for bio-butanol recovery. J. Membr. Sci. 450(0), 38–47 (2014). https://doi.org/10.1016/j.memsci.2013.08.039

    Article  Google Scholar 

  56. Kullu, C., Taner, H., Yesil, H., Evren Tugtas, T.: Application of pervaporation in environmental engineering: vfa separation via commercial and manufactured membranes. In: Can, Z., Yilmaz, B., Genc, S., Seckin, C. (eds.) Engineering Approaches on Sustainability, vol. 2. pp. 113–124. IJOPEC Publication, London (2016)

    Google Scholar 

  57. Wijmans, J.G.: Process performance = membrane properties + operating conditions. J. Membr. Sci. 220(1–2), 1–3 (2003). https://doi.org/10.1016/S0376-7388(03)00221-7

    Article  Google Scholar 

  58. Baker, R.W., Wijmans, J.G., Huang, Y.: Permeability, permeance and selectivity: a preferred way of reporting pervaporation performance data. J. Membr. Sci. 348(1–2), 346–352 (2010). https://doi.org/10.1016/j.memsci.2009.11.022

    Article  Google Scholar 

  59. Zhang, S., Hiaki, T., Hongo, M., Kojima, K.: Prediction of infinite dilution activity coefficients in aqueous solutions by group contribution models. A critical evaluation. Fluid Phase Equilib. 144(1–2), 97–112 (1998). https://doi.org/10.1016/S0378-3812(97)00248-3

    Article  Google Scholar 

  60. Li, S.-Y., Srivastava, R., Parnas, R.S.: Separation of 1-butanol by pervaporation using a novel tri-layer PDMS composite membrane. J. Membr. Sci. 363(1–2), 287–294 (2010)

    Google Scholar 

  61. Extrand, C.W.: A thermodynamic model for wetting free energies from contact angles. Langmuir 19(3), 646–649 (2003)

    Google Scholar 

  62. Gotoh, K., Nakata, Y., Tagawa, M., Tagawa, M.: Wettability of ultraviolet excimer-exposed PE, PI and PTFE films determined by the contact angle measurements. Colloid. Surf. A 224(1–3), 165–173 (2003)

    Google Scholar 

  63. Law, K.-Y., Zhao, H.: Surface Wetting: Characterization, Contact Angle, and Fundamentals, 1st edn. Springer, Switzerland (2016)

    Google Scholar 

  64. Zhan, X., Li, J.-D., Huang, J.-Q., Chen, C.-X.: Pervaporation properties of PDMS membranes cured with different cross-linking reagents for ethanol concentration from aqueous solutions. Chin. J. Polym. Sci. 27(4), 533–542 (2009)

    Google Scholar 

  65. Setlhaku, M., Heitmann, S., Górak, A., Wichmann, R.: Investigation of gas stripping and pervaporation for improved feasibility of two-stage butanol production process. Bioresour. Technol. 136, 102–108 (2013)

    Google Scholar 

  66. Yen, H.-W., Chen, Z.-H., Yang, I.-K.: Use of the composite membrane of poly(ether-block-amide) and carbon nanotubes (CNTs) in a pervaporation system incorporated with fermentation for butanol production by Clostridium acetobutylicum. Bioresour. Technol. 109, 105–109 (2012)

    Google Scholar 

  67. Yi, S., Qi, B., Su, Y., Wan, Y.: Effects of fermentation by-products and inhibitors on pervaporative recovery of biofuels from fermentation broths with novel silane modified silicalite-1/PDMS/PAN thin film composite membrane. Chem. Eng. J. 279, 547–554 (2015)

    Google Scholar 

  68. Hong, H., Chen, L., Zhang, Q., He, F.: The structure and pervaporation properties for acetic acid/water of polydimethylsiloxane composite membranes. Mater. Des. 24, 732–738 (2012)

    Google Scholar 

  69. Li, G., Kikuchi, E., Matsukata, M.: Separation of water/acetic acid mixtures by pervaporation using a thin mordenite membrane. Sep. Purif. Technol. 32(1–3), 199–206 (2003)

    Google Scholar 

  70. Lee, Y.M., Kang, J.S., Nam, S.Y., Choi, C.H.: Removal of acetic acid with amine extractants from fermentation broth using hydrophobic hollow-fiber membrane contactor. Sep. Sci. Technol. 36(3), 457–471 (2001)

    Google Scholar 

  71. Liang, L., Dickson, J.M., Jiang, J., Brook, M.A.: Effect of low flow rate on pervaporation of 1,2-dichloroethane with novel polydimethylsiloxane composite membranes. J. Membr. Sci. 231(1–2), 71–79 (2004)

    Google Scholar 

  72. Yeom, C.K., Kim, H.K., Rhim, J.W.: Removal of trace VOCs from water through PDMS membranes and analysis of their permeation behaviors. J. Appl. Polym. Sci. 73(4), 601–611 (1999). https://doi.org/10.1002/(sici)1097-4628(19990725)73:4%3C601::aid-app16%3E3.0.co;2-%23

    Article  Google Scholar 

  73. Jones, R.J., Massanet-Nicolau, J., Guwy, A., Premier, G.C., Dinsdale, R.M., Reilly, M.: Removal and recovery of inhibitory volatile fatty acids from mixed acid fermentations by conventional electrodialysis. Bioresour. Technol. 189, 279–284 (2015). https://doi.org/10.1016/j.biortech.2015.04.001

    Article  Google Scholar 

  74. Xu, T., Huang, C.: Electrodialysis-based separation technologies: a critical review. Am. Inst. Chem. Eng. 54, 3147–3159 (2008)

    Google Scholar 

  75. Yu, L., Guo, Q., Hao, J., Jiang, W.: Recovery of acetic acid from dilute wastewater by means of bipolar membrane electrodialysis. Desalination 129, 283–288 (2000)

    Google Scholar 

  76. Vertova, A., Aricci, G., Rondinini, S., Miglio, R., Carnelli, L., D’Olimpio, P.: Electrodialytic recovery of light carboxylic acids from industrial aqueous wastes. J. Appl. Electrochem. 39, 2051–2059 (2009)

    Google Scholar 

  77. Pappa, S.: Electrodialysis (ED) Study for the Recovery of Short Chain Carboxylic Acids—Mathematic Modeling of the Electrochemical Process. Agricultural University of Athens, Greece (2017)

    Google Scholar 

  78. Yang, S.T., El-Enshasy, H.A., Thongchul, N.: Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers. Wiley, Hoboken (2013)

  79. Zhang, X., Li, C., Wang, Y., Luo, J., Xu, T.: Recovery of acetic acid from simulated acetaldehyde wastewaters: bipolar membrane electrodialysis processes and membrane selection. J. Membr. Sci. 379, 184–190 (2011)

    Google Scholar 

  80. Jaime Ferrer, J.S., Laborie, S., Durand, G., Rakib, M.: Formic acid regeneration by electromembrane processes. J. Membr. Sci. 280, 509–516 (2006)

    Google Scholar 

  81. Bailly, M.: Production of organic acids by bipolar electrodialysis: realizations and perspectives. Desalination 144, 157–162 (2002)

    Google Scholar 

  82. Tang, J., Jia, S., Qu, S., Xiao, Y., Yuan, Y., Ren, N.-Q.: An integrated biological hydrogen production process based on ethanol-type fermentation and bipolar membrane electrodialysis. Int. J. Hydrog. Energy 39, 13375–13380 (2014)

    Google Scholar 

  83. López-Garzón, C.S., Straathof, A.J.J.: Recovery of carboxylic acids produced by fermentation. Biotechnol. Adv. 32, 873–904 (2014)

    Google Scholar 

  84. Xiong, B., Richard, T.L., Kumar, M.: Integrated acidogenic digestion and carboxylic acid separation by nanofiltration membranes for the lignocellulosic carboxylate platform. J. Membr. Sci. 489, 275–283 (2015)

    Google Scholar 

  85. Ecker, J., Raab, T., Harasek, M.: Nanofiltration as key technology for the separation of LA and AA. J. Membr. Sci. 289, 389–398 (2012)

    Google Scholar 

Download references

Acknowledgements

The financial support of this study by the Scientific and Technological Research Council of Turkey (TUBITAK) (Grant number: 112Y218) was gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Evren Tugtas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yesil, H., Taner, H., Ugur Nigiz, F. et al. Pervaporative Separation of Mixed Volatile Fatty Acids: A Study Towards Integrated VFA Production and Separation. Waste Biomass Valor 11, 1737–1753 (2020). https://doi.org/10.1007/s12649-018-0504-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0504-6

Keywords

Navigation