Skip to main content
Log in

Anaerobic Digestion of Secondary Tannery Sludge: Optimisation of Initial pH and Temperature and Evaluation of Kinetics

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The feasibility of retrofitting and operating a low cost anaerobic mesophilic batch reactor for the reduction of secondary tannery sludge (STNS) produced in tannery wastewater treatment plants at varying initial reactor pH (pHin) using acclimated inoculum was demonstrated using the bio-methane potential test protocol. Temperature had a significant effect on process indicators whilst the effect of pHin was negated by the STNS’ high alkalinity and its buffering capacity offered by ammonia/ammonium speciation, eliminating the need for pH control during digestion. Furthermore, there was an insignificant and significant variation in the biodegradability (Bo) and gas yields of STNS, respectively. This nullified the need for reactor heating if gas yields were not prioritised. Nonetheless, optimum conditions (35.5–37.0 °C and pHin 6.5) yielded 200–217 mL biogas/gVS (≈ 55% CH4), 108–118 mL CH4/gVS and 69–74% VS, 54–57% TS and 47–48% COD reduction. Cumulative CH4 generations were accurately modelled using the modified Gompertz, Logistic, First order, Cone (0.828 ≤ Adj R2 ≤ 0.986) and process kinetics were determined. However, the correlations between kinetics and process parameters were mostly non-monotonic. The positive effect of temperature on A (r = 0.84) coincided with a decrease in methanogenesis rate (k) and ratio of hydrolysis and methanogenesis (K/µm) at optimum pHin signifying an inhibited steady state reactor condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Swartz, C.D., Jackson-Moss, C., Rowswell, R., Mpofu, A.B., Welz, P.J.: Water and Wastewater Management in the Tanning and Leather Finishing Industry. Water Research Commission, Pretoria (2017)

    Google Scholar 

  2. Buljan, J., Král, I.: The Framework for Sustainable Leather Manufacture. UNIDO, Vienna (2015)

    Google Scholar 

  3. Mpofu, A.B.: Optimisation of the Anaerobic Treatment of Secondary Tannery Sludge for Biogas Production and Solids Reduction. Cape Peninsula University of Technology, Cape Town (2018)

    Google Scholar 

  4. Priebe, G.P.S., Gutterres, M.: Anaerobic digestion of leather industry wastes—an alternate source of energy. J. Am. Leather Chem. Assoc. 112, 59–71 (2017)

    Google Scholar 

  5. Zhang, C., Su, H., Baeyens, J., Tan, T.: Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sustain. Energy Rev. 38, 383–392 (2014)

    Article  Google Scholar 

  6. El-mashad, H.M., Zeeman, G., van Loon, W.K.P., Bot, G.P.A., Lettinga, G.: Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure. Bioresour. Technol. 95, 191–201 (2004)

    Article  Google Scholar 

  7. Garcia, M.L., Angenent, L.T.: Interaction between temperature and ammonia in mesophilic digesters for animal waste treatment. Water. Res. (2009). https://doi.org/10.1016/j.watres.2009.02.036

    Article  Google Scholar 

  8. Deng, L., Yang, H., Liu, G., Zheng, D., Chen, Z., Liu, Y., et al.: Kinetics of temperature effects and its significance to the heating strategy for anaerobic digestion of swine wastewater. Appl. Energy (2014). https://doi.org/10.1016/j.apenergy.2014.08.027

    Article  Google Scholar 

  9. Nozhevnikova, A.N., Nekrasova, V., Ammann, A., Zehnder, A.J.B., Wehrli, B., Holliger, C.: Influence of temperature and high acetate concentrations on methanogenensis in lake sediment slurries. FEMS Microbiol. Ecol. 62, 336–344 (2007)

    Article  Google Scholar 

  10. Da Ros, C., Cavinato, C., Pavan, P.: Optimization of thermophilic anaerobic digestion of winery bio-waste by micro-nutrients augmentation. Environ. Eng. Manag. J. 14, 1535–1542 (2015)

    Article  Google Scholar 

  11. Guo, J., Dong, R., Clemens, J., Wang, W.: Performance evaluation of a completely stirred anaerobic reactor treating pig manure at a low range of mesophilic conditions. Waste Manag. J. (2013). https://doi.org/10.1016/j.wasman.2013.06.015

    Article  Google Scholar 

  12. Nachaiyasit, S., Stuckey, D.C.: Effect of low temperatures on the performance of an anaerobic baffled reactor (ABR). J. Chem. Technol. Biotechnol. 69, 276–284 (1997)

    Article  Google Scholar 

  13. Ogiehor, I.S., Ovueni, U.J.: Effect of temperature, pH, and solids concentration on biogas production from poultry waste. Int. J. Sci Eng. Res. (2014). http://www.ijser.org

  14. Kayhanian, M.: Ammonia inhibition in high-solids biogasification: an overview and practical solutions. Environ. Technol. 20, 355–365 (1999)

    Article  Google Scholar 

  15. Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., et al.: Towards a standardization of biomethane potential tests. Water Sci. Technol. 74, 2515–2522 (2016)

    Article  Google Scholar 

  16. Bayard, R., Benbelkacem, H., Gourdon, R., Buffière, P.: Characterization of selected municipal solid waste components to estimate their biodegradability. J. Environ. Manag. 87, 1–9 (2017)

    Google Scholar 

  17. Kafle, G.K., Kim, S.H., Sung, K.I.: Ensiling of fish industry waste for biogas production: a lab scale evaluation of biochemical methane potential (BMP) and kinetics. Bioresour. Technol. 127, 326–336 (2013)

    Article  Google Scholar 

  18. Bilgili, M.S., Demir, A., Varank, G.: Evaluation and modeling of biochemical methane potential (BMP) of landfilled solid waste: a pilot scale study. Bioresour. Technol. 100, 4976–4980 (2009)

    Article  Google Scholar 

  19. Donoso-Bravo, A.,  Pérez-Elvira, S.I., Fdz-Polanco, F.: Application of simplified models for anaerobic biodegradability tests. Evaluation of pre-treatment processes. Chem. Eng. J. 160, 607–614 (2010) 

    Article  Google Scholar 

  20. Pitt, R.E., Cross, T.L., Pell, A,N., Schofield, P., Doane, P.H.: Use of in vitro gas production models in ruminal kinetics. Math Biosci. (1999). http://linkinghub.elsevier.com/retrieve/pii/S0025556499000206

  21. Gao, S., Zhao, M., Chen, Y., Yu, M., Ruan, W.: Tolerance response to in situ ammonia stress in a pilot-scale anaerobic digestion reactor for alleviating ammonia inhibition. Bioresour. Technol. (2015). https://doi.org/10.1016/j.biortech.2015.09.044

    Article  Google Scholar 

  22. Guerrero, L., Chamy, R., Jeison, D., Montalvo, S., Huiliñir, C., Guerrero, L., et al.: Behavior of the anaerobic treatment of tannery wastewater at different initial pH values and sulfate concentrations. Environ. Sci. Health 48, 1073–1078 (2013)

    Article  Google Scholar 

  23. Akyol, Ç., Demirel, B., Onay, T.T.: Recovery of methane from tannery sludge: the effect of inoculum to substrate ratio and solids content. J. Mater. Cycles Waste Manag. (2014). https://doi.org/10.1007/s10163-014-0306-2

    Article  Google Scholar 

  24. Berardino, S., Di Martinho, A.: Co-digestion of tanning residues and sludge. In: 12th IWA sludge conference—sustainable management of water and wastewater sludge. (2009). http://repositorio.lneg.pt/handle/10400.9/596

  25. Zupančič, G.D., Jemec, A.: Anaerobic digestion of tannery waste: semi-continuous and anaerobic sequencing batch reactor processes. Bioresour. Technol. 101, 26–33 (2010)

    Article  Google Scholar 

  26. Carotenuto, C., Guarino, G., Morrone, B., Minale, M.: Temperature and pH effect on methane production from buffalo manure anaerobic digestion. Int, J. Heat Technol. (2016). http://www.iieta.org/sites/default/files/Journals/HTECH/IJHT.34.S2_33.pdf

  27. Li, L., He, Q., Zhao, X., Wu, D., Wang, X., Peng, X.: Anaerobic digestion of food waste: correlation of kinetic parameters with operational conditions and process performance. Biochem. Eng. J. 130, 1–9 (2018)

    Article  Google Scholar 

  28. Membere, E., Sallis, P.: Effect of temperature on kinetics of biogas production from macroalgae. Bioresour. Technol. (2018). https://doi.org/10.1016/j.biortech.2018.05.023

    Article  Google Scholar 

  29. Mondal, C., Biswas, G.K.: Effect of temperature on kinetic constants in anaerobic bio-digestion. Chem. Rev. 1, 19–28 (2013)

    Google Scholar 

  30. Munk, B., Lebuhn, M.: Process diagnosis using methanogenic Archaea in maize-fed, trace element depleted fermenters. Mol. Biol.Genet. Biotechnol. 29, 22–28 (2014)

    Google Scholar 

  31. Kim, M., Ahn, Y., Speece, R.E.: Comparative process stability and efficiency of anaerobic digestion; mesophilic vs thermophilic. Water Res. 36, 4369–4385 (2002)

    Article  Google Scholar 

  32. Elaiyaraju, P., Partha, N.: Studies on biogas production by anaerobic process using agroindustrial wastes. Res. Agric. Eng. 62, 73–82 (2016)

    Article  Google Scholar 

  33. Massé, D.I., Masse, L., Verville, A., Bilodeau, S.: The start-up of anaerobic sequencing batch reactors at 20 °C and 25 °C for the treatment of slaughterhouse wastewater. J. Chem. Technol. Biotechnol. 76, 393–400 (2001)

    Article  Google Scholar 

  34. Trisakti, B., Irvan, M., Taslim, T.M.: Effect of temperature on methanogenesis stage of two-stage anaerobic digestion of palm oil mill effluent (POME) into biogas. IOP. Conf. Ser. Mater. Sci. Eng. 206, 1–8 (2017)

    Article  Google Scholar 

  35. Sri Bala, K., Kalyanaraman, C., Umamaheswari, B., Thanasekaran, K.: Enhancement of biogas generation during co-digestion of tannery solid wastes through optimization of mix proportions of substrates. Clean Technol. Environ. Policy 16, 1067–1080 (2014)

    Article  Google Scholar 

  36. Thangamani, A., Rajakumar, S., Ramanujam, R.A.: Anaerobic co-digestion of hazardous tannery solid waste and primary sludge: biodegradation kinetics and metabolite analysis. Clean Technol. Environ. Policy 12, 517–524 (2010)

    Article  Google Scholar 

  37. Thangamani, A., Rajakumar, S., Ramanujam, R.A.: Biomethanation potential of animal fleshing and primary sludge and effect of refractory fraction of volatile solids. J. Environ. Sci. Sustain. Soc. 3, 29–34 (2009)

    Article  Google Scholar 

  38. O’Flaherty, V., Mahony, T., O’Kennedy, R., Colleran, E.: Effect of pH on growth kinetics and sulphide toxicity thresholds of a range of methanogenic, syntrophic and sulphate-reducing bacteria. Process Biochem. 33, 555–569 (1998)

    Article  Google Scholar 

  39. Deepanraj, B., Sivasubramanian, V., Jayaraj, S.: Experimental and kinetic study on anaerobic digestion of food waste: the effect of total solids and pH. J. Renew. Sustain. Energy (2015). https://doi.org/10.1063/1.4935559

    Article  Google Scholar 

  40. Sri Bala, K., Kalyanaraman, C., Porselvam, S., Thanasekaran, K.: Optimization of inoculum to substrate ratio for bio-energy generation in co-digestion of tannery solid wastes. Clean Technol. Environ. Policy. 14, 241–250 (2012)

    Article  Google Scholar 

  41. Amani, T., Nosrati, M., Sreekrishnan, T.R.: Anaerobic digestion from the viewpoint of microbiological, chemical, and operational aspects—a review. Environ. Rev. 278, 255–278 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Water Research Commission (WRC) for funding this project and the NATSURV K5/2490 project team. Any opinion, findings and conclusions or recommendations expressed in this material are those of the authors and therefore the WRC does not accept any liability in this regard thereto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Mpofu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mpofu, A.B., Welz, P.J. & Oyekola, O.O. Anaerobic Digestion of Secondary Tannery Sludge: Optimisation of Initial pH and Temperature and Evaluation of Kinetics. Waste Biomass Valor 11, 873–885 (2020). https://doi.org/10.1007/s12649-018-00564-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-00564-y

Keywords

Navigation