Skip to main content

Advertisement

Log in

Characterization of Barley Straw, Hemp Shiv and Corn Cob as Resources for Bioaggregate Based Building Materials

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Expanding the use of low-environmental impact materials in the field of building materials is a major aim in a context of sustainable development. These alternative materials should be non-polluting, eventually recycled, and locally available. Bioresources are already used in some building materials but few studies have investigated their relevance in such applications. The aim of this paper is to evaluate the suitability of three kinds of vegetal aggregates: barley straw, hemp shiv and corn cob. The availability of these bioresources, extracted from a French database, is discussed, as are their physical properties and chemical compositions. Their microstructure is described with SEM images and their particle size distributions are provided through image analysis. Sorption–desorption isotherms are measured by a Dynamic Vapour Sorption system. Bulk density, thermal conductivity and water absorption are also quantified. The results highlight a tubular structure for the three different aggregates, with low bulk density and thermal conductivity (0.044, 0.051 and 0.096 W m−1 K−1 respectively for straw, hemp shiv and corn cob) and high water absorption, especially for barley straw and hemp shiv (414 and 380% vs. 123% for corn cob). Their hygric regulation capacity is also sufficiently good, with a water sorption of between 20 and 26% at 95% of relative humidity. These plant aggregates could therefore be used as additions in an earth matrix, or a hydraulic, pozzolanic, air lime or gypsum binder, or just as loose-fill insulation material. However, future research should focus on their resistance to fire and bacterial growth to validate this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. European Commission, Buildings.”2016.

  2. Ministère de l’Environnement, de l’Energie et de la Mer, “Bâtiments et villes durables - Déchets du bâtiment.” 2012.

  3. Shea, A., Lawrence, M., Walker, P.: Hygrothermal performance of an experimental hemp–lime building. Constr. Build. Mater. 36, 270–275 (Nov. 2012)

    Article  Google Scholar 

  4. Millogo, Y., Morel, J.-C., Aubert, J.-E., Ghavami, K.: Experimental analysis of Pressed Adobe Blocks reinforced with Hibiscus cannabinus fibers. Constr. Build. Mater. 52, 71–78 (2014)

    Article  Google Scholar 

  5. Labat, M., Magniont, C., Oudhof, N., Aubert, J.-E.: From the experimental characterization of the hygrothermal properties of straw-clay mixtures to the numerical assessment of their buffering potential. Build. Environ. 97, 69–81 (2016)

    Article  Google Scholar 

  6. Al Rim, K., Ledhem, A., Douzane, O., Dheilly, R. M., Queneudec, M.: Influence of the proportion of wood on the thermal and mechanical performances of clay-cement-wood composites. Cem. Concr. Compos. 21(4), 269–276 (1999)

    Article  Google Scholar 

  7. Aymerich, F., Fenu, L., Meloni, P.: Effect of reinforcing wool fibres on fracture and energy absorption properties of an earthen material. Constr. Build. Mater. 27(1), 66–72 (2012)

    Article  Google Scholar 

  8. Tronet, P., Lecompte, T., Picandet, V., Baley, C.: Study of lime hemp composite precasting by compaction of fresh mix — An instrumented die to measure friction and stress state. Powder Technol. 258, 285–296 (2014)

    Article  Google Scholar 

  9. Dinh, T. M.: Contribution to the development of precast hempcrete using innovative pozzolanic binder, PhD dissertation in Civil Engineering, Université Toulouse III - Paul Sabatier, Toulouse, 2014

  10. Niyigena, C., et al.: Variability of the mechanical properties of hemp concrete. Mater. Today Commun. 7, 122–133 (2016)

    Article  Google Scholar 

  11. Arnaud, L., Gourlay, E.: Experimental study of parameters influencing mechanical properties of hemp concretes. Constr. Build. Mater. 28(1), 50–56 (2012)

    Article  Google Scholar 

  12. Nozahic, V., Amziane, S.: Influence of sunflower aggregates surface treatments on physical properties and adhesion with a mineral binder. Compos. Part Appl. Sci. Manuf. 43(11), 1837–1849 (2012)

    Article  Google Scholar 

  13. Ratiarisoa, V., Magniont, C., Ginestet, S., Oms, C., Escadeillas, G.: Assessment of distilled lavender stalks as bioaggregate for building materials: Hygrothermal properties, mechanical performance and chemical interactions with mineral pozzolanic binder. Constr. Build. Mater. 124, 801–815 (2016)

    Article  Google Scholar 

  14. de Wit, M., Faaij, A.: European biomass resource potential and costs. Biomass Bioenerg. 34(2), 188–202 (2010)

    Article  Google Scholar 

  15. G. Fischer, S. Prieler, H. van Velthuizen, S. M. Lensink, M. Londo, and M. de Wit, Biofuel production potentials in Europe: sustainable use of cultivated land and pastures. Part I: Land productivity potentials. Biomass Bioenerg. 34(2), pp. 159–172, 2010.

    Article  Google Scholar 

  16. Ericsson, K., Nilsson, L. J.: Assessment of the potential biomass supply in Europe using a resource-focused approach. Biomass Bioenergy. 30(1), 1–15 (2006)

    Article  Google Scholar 

  17. Palumbo, M., Avellaneda, J., Lacasta, A. M.: “Availability of crop by-products in Spain: new raw materials for natural thermal insulation”. Resour. Conserv. Recycl. 99, 1–6 (2015)

    Article  Google Scholar 

  18. France Agrimer, L’observatoire national des ressources en biomasse - Evaluation des ressources disponibles en France. Agrimer, France 2015.

    Google Scholar 

  19. Laborel-Préneron, A, Aubert, J. E., Magniont, C. Tribout, C. and Bertron, A.: Plant aggregates and fibers in earth construction materials: a review. Constr. Build. Mater. 111, 719–734 (2016)

    Article  Google Scholar 

  20. Aubert, J.-E., Marcom, A., Oliva, P., Segui, P.: Chequered earth construction in south-western France. J. Cult. Herit., 16(3), pp. 293–298, 2015

    Article  Google Scholar 

  21. Quagliarini, E., Lenci, S.: The influence of natural stabilizers and natural fibres on the mechanical properties of ancient Roman adobe bricks. J. Cult. Herit. 11(3), 309–314 (2010)

    Article  Google Scholar 

  22. Ashour, T., Wieland, H., Georg, H., Bockisch, F.-J., Wu, W.: The influence of natural reinforcement fibres on insulation values of earth plaster for straw bale buildings. Mater. Des. 31(10), 4676–4685 (2010)

    Article  Google Scholar 

  23. Turanli, L., Saritas, A.: Strengthening the structural behavior of adobe walls through the use of plaster reinforcement mesh. Constr. Build. Mater. 25(4), 1747–1752 (2011)

    Article  Google Scholar 

  24. Ş. Yetgin, Ö. Çavdar, and Çavdar, A.: “The effects of the fiber contents on the mechanic properties of the adobes. Constr. Build. Mater. 22(3), 222–227 (2008)

    Article  Google Scholar 

  25. Bouhicha, M., Aouissi, F., Kenai, S.: Performance of composite soil reinforced with barley straw. Cem. Concr. Compos. 27(5), 617–621 (2005)

    Article  Google Scholar 

  26. Faria, P., Santos, T., Aubert, J.-E.: Experimental characterization of an earth eco-efficient plastering mortar. J. Mater. Civ. Eng., 28(1), 2016

  27. Nomadéis, Etude sur le secteur et les filières de production des matériaux et produits bio-sourcés utilisés dans la construction (à l’exception du bois), 2012

  28. Magniont, C.: Contribution à la formulation et à la caractérisation d’un écomatériau de construction à base d’agroressources, PhD dissertation in Civil Engieneering, Université Toulouse III - Paul Sabatier, Toulouse, 2010

  29. Cerezo, V.: Propriétés mécaniques, thermiques et acoustiques d’un matériau à base de particules végétales: approche expérimentale et modélisation théorique, PhD dissertation in Civil Engineering, Institut National des Sciences Appliquées, Lyon, 2005

  30. C. Flament, Valorisation de fines de lavage de granulats†¯: application à la construction en terre crue, PhD dissertation in Civil Engineering, Université d’Artois, Béthune, 2013.

  31. Hamard, E., Morel, J.-C., Salgado, F., Marcom, A., Meunier, N.: A procedure to assess the suitability of plaster to protect vernacular earthen architecture. J. Cult. Herit. 14(2), 109–115 (2013)

    Article  Google Scholar 

  32. Pinto, J., et al.: Corn’s cob as a potential ecological thermal insulation material. Energy Build. 43(8), 1985–1990 (2011)

    Article  Google Scholar 

  33. Verdier, T., Magniont, C., Escadeillas, G.: Etude comparative de 3 types de particules végétales en vue de leur incorporation comme granulats légers dans une matrice minérale, presented at the NoMaD, Toulouse, France, 2012

  34. Palumbo, M.: Contribution to the development of new bio-based thermal insulation materials made from vegetal pith and natural binders, PhD Thesis, Universitat Politècnica de Catalunya, Barcelona, 2015

  35. S. Amziane, F. Collet, M. Lawrence, C. Magniont, and V. Picandet, Round robin test for hemp shiv characterisation,” in Bio-aggregates based building materials - State-of-the-Art Report of the RILEM Technical Committee 236-BBM, Springer, vol. 23, 2017.

  36. FAOSTAT, Statistical pocketbook - World food and agriculture. 2015.

  37. Agreste, Statistique agricole annuelle. 2014.

  38. D. Jölli and S. Giljum, Unused biomass extraction in agriculture, forestry and fishery. Sustainable Europe Research Institute (SERI), 2005.

  39. FCBA, Mémento 2015. 2015.

  40. V. Picandet, Characterization of Plant-Based Aggregates, in Bio-aggregate-based Building Materials, S. Amziane, L. Arnaud, and N. Challamel, Eds. Hoboken: John Wiley & Sons, Inc., 2013, pp. 27–74.

    Chapter  Google Scholar 

  41. Chabannes, M., Nozahic, V., Amziane, S.: Design and multi-physical properties of a new insulating concrete using sunflower stem aggregates and eco-friendly binders. Mater. Struct. 48(6), 1815–1829 (2015)

    Article  Google Scholar 

  42. Nozahic, V., Amziane, S., Torrent, G., Saïdi, K., De Baynast, H.: Design of green concrete made of plant-derived aggregates and a pumice–lime binder. Cem. Concr. Compos. 34(2), 231–241 (2012)

    Article  Google Scholar 

  43. Chabannes, M., Bénézet, J.-C., Clerc, L., Garcia-Diaz, E.: Use of raw rice husk as natural aggregate in a lightweight insulating concrete: an innovative application. Constr. Build. Mater. 70, 428–438 (2014)

    Article  Google Scholar 

  44. AFNOR, “NF V18-122 - Aliments des animaux - Détermination séquentielle des constituants pariétaux - Méthode par traitement aux détergents neutre et acide et à l’acide sulfurique.” 2013.

  45. McGregor, F., Heath, A., Fodde, E., Shea, A.: Conditions affecting the moisture buffering measurement performed on compressed earth blocks. Build. Environ. 75, 11–18 (May 2014)

    Article  Google Scholar 

  46. Feng, C., Janssen, H., Feng, Y., Meng, Q.: Hygric properties of porous building materials: analysis of measurement repeatability and reproducibility. Build. Environ. 85, 160–172 (Feb. 2015)

    Article  Google Scholar 

  47. Bui, R., Labat, M., Aubert, J.-E.: Comparison of the saturated salt solution and the dynamic vapor sorption techniques based on the measured sorption isotherm of barley straw. Constr. Build. Mater. doi:10.1016/j.conbuildmat.2017.03.005 (2017)

  48. AFNOR, Performance hygrothermique des matériaux et produits pour le bâtiment - Détermination des propriétés de sorption hygroscopique. NF EN ISO 12571, 2013.

  49. H. Cagnon, J. E. Aubert, M. Coutand, and C. Magniont, Hygrothermal properties of earth bricks. Energy Build., vol.80, 208–217, 2014.

    Article  Google Scholar 

  50. Association Construire en Chanvre, “Exécution d’ouvrages en bétons de chanvre†¯: mur en béton de chanvre, isolation de sol en béton de chanvre, isolation de toiture en béton de chanvre, enduits en mortier de chanvre (Règles professionnelles).” Société d’édition du bâtiment et des travaux publics, 2012.

  51. J. Pinto et al., Characterization of corn cob as a possible raw building material. Constr. Build. Mater., 34, 28–33, 2012.

    Article  Google Scholar 

  52. T. T. Nguyen, Contribution à l’étude de la formulation et du procédé de fabrication d’éléments de construction en béton de chanvre, PhD dissertation in Civil Engineering, Université de Bretagne-SUD, 2010.

  53. Danso, H., Martinson, D. B., Ali, M., Williams, J.: Effect of fibre aspect ratio on mechanical properties of soil building blocks. Constr. Build. Mater. 83, 314–319 (2015)

    Article  Google Scholar 

  54. Binici, H., Aksogan, O., Bodur, M. N., Akca, E., Kapur, S.: Thermal isolation and mechanical properties of fibre reinforced mud bricks as wall materials. Constr. Build. Mater. 21(4), 901–906 (2007)

    Article  Google Scholar 

  55. Bouasker, M., Belayachi, N., Hoxha, D., Al-Mukhtar, M.: Physical characterization of natural straw fibers as aggregates for construction materials applications. Materials. 7(4), 3034–3048 (2014)

    Article  Google Scholar 

  56. Belhadj, B., Bederina, M., Makhloufi, Z., Goullieux, A., Quéneudec, M.: Study of the thermal performances of an exterior wall of barley straw sand concrete in an arid environment. Energy Build. 87, 166–175 (2015)

    Article  Google Scholar 

  57. Verdier, T., Magniont, C., Escadeillas, G.: Valorisation de granulats végétaux dans un matériau de construction à matrice minérale, presented at the Colloque International Francophone NoMaD, Toulouse, France, 2012

  58. Eurocob, Corn cob products, “Product specifications, EU-GRITS 8/10.” 2003.

  59. Goodhew, S., Griffiths, R.: Sustainable earth walls to meet the building regulations. Energy Build. 37(5), 451–459 (2005)

    Article  Google Scholar 

  60. Maskell, D., et al., Properties of bio-based insulation materials and their potential impact on indoor air quality, presented at the First International Conference on Bio-based Building Materials, Clermont-Ferrand, France, 2015

  61. D. Molle and P.-M. Patry, RT 2012 et RT Existant: réglementation thermique et efficacité énergétique. Editions Eyrolles, 2011.

  62. Bal, H., Jannot, Y., Quenette, N., Chenu, A., Gaye, S.: Water content dependence of the porosity, density and thermal capacity of laterite based bricks with millet waste additive. Constr. Build. Mater. 31, 144–150 (2012)

    Article  Google Scholar 

  63. Segetin, M., Jayaraman, K., Xu, X.: Harakeke reinforcement of soil–cement building materials: Manufacturability and properties. Build. Environ. 42(8), 3066–3079 (2007)

    Article  Google Scholar 

  64. W.. Banks: Water uptake by scots pine sapwood, and its restriction by the use of water repellents. Wood Sci. Technol. 7, 271–284 (1973)

    Article  Google Scholar 

  65. Groot, C., Larbi, J.: The influence of water flow (reversal) on bond strength development in young masonry. Heron, 44(2), 63–78 1999

  66. Algin, H. M., Turgut, P.: Cotton and limestone powder wastes as brick material. Constr. Build. Mater. 22(6), 1074–1080 (2008)

    Article  Google Scholar 

  67. Mohanty, Misra, M., Drzal, L.: Natural Fibers, Biopolymers, and Biocomposites, CRC Press. 2005

  68. Vassilev, S. V., Baxter, D., Andersen, L. K., Vassileva, C. G., Morgan, T. J.: An overview of the organic and inorganic phase composition of biomass. Fuel. 94, 1–33 (2012)

    Article  Google Scholar 

  69. Mohnen, D.: Pectin structure and biosynthesis. Curr. Opin. Plant Biol. 11(3), 266–277 (2008)

    Article  Google Scholar 

  70. Diquélou, Y., Gourlay, E., Arnaud, L., Kurek, B.: Impact of hemp shiv on cement setting and hardening: Influence of the extracted components from the aggregates and study of the interfaces with the inorganic matrix. Cem. Concr. Compos. 55, 112–121 (2015)

    Article  Google Scholar 

  71. Sedan, D., Pagnoux, C., Smith, A., Chotard, T.: Mechanical properties of hemp fibre reinforced cement: Influence of the fibre/matrix interaction. J. Eur. Ceram. Soc. 28(1), 183–192 (2008)

    Article  Google Scholar 

  72. Jorge, F., Pereira, C., Ferrera, J.: Wood-cement composites: a review. Holz Roh Werkst. 62, 370–377 (2008)

    Article  Google Scholar 

  73. Na, B., Wang, Z., Wang, H., Lu, X.: Wood-cement compatibility review. Wood Res. 5(59), 813–826 (2014)

    Google Scholar 

  74. Govin, A., Peschard, A., Guyonnet, R.: Modification of cement hydration at early ages by natural and heated wood. Cem. Concr. Compos. 28(1), 12–20 (2006)

    Article  Google Scholar 

  75. Vaickelionis, G., Vaickelioniene, R.: Cement hydration in the presence of wood extractives and pozzolan mineral additives. Ceram. Silik. 2(50), 115–122 (2006)

    Google Scholar 

  76. M. Irle and H. Simpson, Agricultural residues for cement-bonded composites, presented at the Moslemi A (ed) Inorganic-Bonded Wood and Fiber Composite Material Conference Proceedings, 1996, vol. 5, pp. 54–58.

  77. E. Eusebio and M. Suzuki, Production and properties of plant materials cement bonded composites. Bull. Exp. For. Lab. Tokyo Univ. Agric. Technol., 27, 27–38, 1990.

    Google Scholar 

  78. Soroushian, P., Aouadi, F., Chowdhury, H., Nossoni, A., Sarwar, G.: Cement-bonded straw board subjected to accelerated processing. Cem. Concr. Compos. 26(7), 797–802 (2004)

    Article  Google Scholar 

  79. Aggarwal, L. K., Agrawal, S. P., Thapliyal, P. C., Karade, S. R.: Cement-bonded composite boards with arhar stalks. Cem. Concr. Compos. 30(1), 44–51 (Jan. 2008)

    Article  Google Scholar 

  80. Bilba, K., Arsene, M.-A., Ouensanga, A.: Sugar cane bagasse fibre reinforced cement composites. Part I. Influence of the botanical components of bagasse on the setting of bagasse/cement composite. Cem. Concr. Compos. 25(1), 91–96 (2003)

    Article  Google Scholar 

  81. G. A. M. Brasileiro, J. A. R. Vieira, Barreto, L. S.: Use of coir pith particles in composites with Portland cement. J. Environ. Manag. 131, 228–238 (Dec. 2013)

    Article  Google Scholar 

  82. Boustingorry, P., Grosseau, P., Guyonnet, R., Guilhot, B.: The influence of wood aqueous extractives on the hydration kinetics of plaster. Cem. Concr. Res. 35(11), 2081–2086 (Nov. 2005)

    Article  Google Scholar 

  83. Ardanuy, M., Claramunt, J., Toledo Filho, R. D.: Cellulosic fiber reinforced cement-based composites: A review of recent research. Constr. Build. Mater. 79, 115–128 (Mar. 2015)

    Article  Google Scholar 

  84. Balčiūnas, G., Vėjelis, S., Vaitkus, S., Kairytė, A.: Modern building materials, structures and techniques physical properties and structure of composite made by using hemp hurds and different binding materials. Procedia Eng. 57, 159–166 (2013)

    Article  Google Scholar 

  85. Sun, J. X., Xu, F., Sun, X. F., Xiao, B., Sun, R. C.: Physico-chemical and thermal characterization of cellulose from barley straw. Polym. Degrad. Stab. 88(3), 521–531 (2005)

    Article  Google Scholar 

  86. Zhu, Z., Toor, S. S., Rosendahl, L., Yu, D., Chen, G.: Influence of alkali catalyst on product yield and properties via hydrothermal liquefaction of barley straw. Energy. 80, 284–292 (2015)

    Article  Google Scholar 

  87. La chanvrière de l’Aube, “Kanabat, technical document.&#8221.

  88. B. De Groot, Alkaline hemp woody core pulping - impregnation characteristics, kinetic modelling and papermaking qualities, 1994.

  89. Y. Hustache and L. Arnaud, Synthèse des connaissances sur les bétons et mortiers de chanvre. Fibres Recherche Développement, Lhoist, Construire en Chanvre, 2008.

  90. Garcia-Jaldon, C., Dupeyre, D.: Fibres from semi-retted hemp bundles by steam explosion treatment. Biomass Bioenerg. 14(3), 251–260 (Mar. 1998)

    Article  Google Scholar 

  91. Vignon, M. R., Dupeyre, D., Garcia-Jaldon, C.: IEA Network-Biotechnology for the conversion of lignocellulosics morphological characterization of steam-exploded hemp fibers and their utilization in polypropylene-based composites. Bioresour. Technol. 58(2), 203–215 (1996)

    Article  Google Scholar 

  92. Gandolfi, S., Ottolina, G., Riva, S., Fantoni, G. P., Patel, I.: Complete chemical analysis of carmagnola hemp hurds and structural features of its components. BioResources. 8(2), 2641–2656 (2013)

    Article  Google Scholar 

  93. Velmurugan, P., et al.: Monascus pigment production by solid-state fermentation with corn cob substrate. J. Biosci. Bioeng. 112(6), 590–594 (Dec. 2011)

    Article  Google Scholar 

  94. Millogo, Y., Aubert, J.-E., Hamard, E., Morel, J.-C.: How properties of kenaf fibers from Burkina Faso contribute to the reinforcement of earth blocks. Materials. 8(5), 2332–2345 (2015)

    Article  Google Scholar 

  95. Alvarez, V. A., Vázquez, A.: Influence of fiber chemical modification procedure on the mechanical properties and water absorption of MaterBi-Y/sisal fiber composites. Compos. Part Appl. Sci. Manuf. 37(10), 1672–1680 (2006)

    Article  Google Scholar 

  96. Kymäläinen, H.-R., Sjöberg, A.-M.: Flax and hemp fibres as raw materials for thermal insulations. Build. Environ. 43(7), 1261–1269 (2008)

    Article  Google Scholar 

  97. Collet, F., Bart, M., Serres, L., Miriel, J.: Porous structure and water vapour sorption of hemp-based materials. Constr. Build. Mater. 22(6), 1271–1280 (2008)

    Article  Google Scholar 

  98. C. A. S. Hill, Norton, A., Newman, G.: The water vapor sorption behavior of natural fibers. J. Appl. Polym. Sci. 112(3), 1524–1537 (2009)

    Article  Google Scholar 

  99. M. Maddison, T. Mauring, K. Kirsimäe, Ü. Mander, The humidity buffer capacity of clay–sand plaster filled with phytomass from treatment wetlands. Build. Environ. vol. 44, no. 9, pp. 1864–1868, 2009.

    Article  Google Scholar 

  100. Ashour, T., Georg, H., Wu, W.: An experimental investigation on equilibrium moisture content of earth plaster with natural reinforcement fibres for straw bale buildings. Appl. Therm. Eng. 31(2–3), 293–303 (Feb. 2011)

    Article  Google Scholar 

  101. Černý, R., Kunca, A., Tydlitát, V., Drchalová, J., Rovnaníková, P.: Effect of pozzolanic admixtures on mechanical, thermal and hygric properties of lime plasters. Constr. Build. Mater. 20(10), 849–857 (Dec. 2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the French National Research Agency - France (ANR) for funding Project BIOTERRA - ANR -  13 - VBDU - 0005 Villes et Bâtiments Durables.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélie Laborel-Préneron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laborel-Préneron, A., Magniont, C. & Aubert, JE. Characterization of Barley Straw, Hemp Shiv and Corn Cob as Resources for Bioaggregate Based Building Materials. Waste Biomass Valor 9, 1095–1112 (2018). https://doi.org/10.1007/s12649-017-9895-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9895-z

Keywords

Navigation