Skip to main content

Advertisement

Log in

Thermochemical Transformation of Residual Avocado Seeds: Torrefaction and Carbonization

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This paper describes the energy valorization of residual avocado seeds through their thermochemical transformation in a rotary reactor. This experimental investigation reports the chemical, physical and fuel properties of the solids and liquids obtained in the temperature range between 150 and 900 °C. Optimum torrefaction conditions were obtained at 304 °C and yielded a solid product (50 wt%) with 36.7 wt% fixed carbon, 0.47 O/C ratio, and 23.2 MJ/kg of LHV, for an energy yield of 76.7 %. The carbonization at temperatures between 500 and 900 °C yielded between 20.0 and 25.1 wt% biochar that exhibited LHV up to 57–66 % higher than the original biomass. The liquid fraction represents 53–56 wt% of the original biomass and contains 70–75 wt% of water. These liquids exhibit limited elemental carbon contents (up to 16 wt%) and higher heating values (up to 3 MJ/kg). The utility of a predictive model has been tested and series of equations have been produced predicting the chemical and energy properties of the solid fraction derived from the torrefaction and carbonization process. Linear correlations were observed between the solid fraction yield and elemental/proximate compositions, and exponential correlations between solid and energy yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Seymour, G.B., Tucker, G.A.: Avocado. In: Seymour, G.B., Taylor, J., Tucker, G.A. (eds.) Biochemistry of Fruit Ripening, pp. 53–81. Chapman & Hall, London (1993)

    Chapter  Google Scholar 

  2. Food and Agriculture Organization (FAO). http://faostat3.fao.org/browse (2013). Accessed 05 July 2015

  3. Dorantes-Alvarez, L., Ortiz-Moreno, A., García-Ochoa, F.: Avocado. In: Siddiq, M., Ahmed, J., Lobo, M.G., Ozadali, F. (eds.) Tropical and Subtropical Fruits: Postharvest Physiology, Processing and Packaging, pp. 437–454. Wiley-Blackwell, Oxford (2012)

    Google Scholar 

  4. González-Fernández, J.J., Galea, Z., Álvarez, J.M., Hormaza, J.I., López, R.: Evaluation of composition and performance of composts derived from guacamole production residues. J. Environ. Manag. 147, 132–139 (2015)

    Article  Google Scholar 

  5. Cowan, A.K., Wolstenholme, B.N.: Avocados. In: Caballero, B. (ed.) Encyclopedia of Food Sciences and Nutrition, 2nd edn, pp. 348–353. Academic Press, Oxford (2003)

    Chapter  Google Scholar 

  6. Weatherby, L.S., Sorber, D.G.: Chemical composition of avocado seed1. Ind. Eng. Chem. 23, 1421–1423 (1931)

    Article  Google Scholar 

  7. de Arriola, M.D.C., Menchú, J.F., Rolz, C.: The Avocado. In: Charalambous, G.E., Inglett, G. (eds.) Tropical Food: Chemistry and Nutrition, pp. 609–624. Academic Press, New York (1979)

    Chapter  Google Scholar 

  8. Rachimoellah, H.M., Resti, D.A., Zibbeni, A., Susila, D.I.W.: Production of biodiesel through transesterification of avocado (Persea gratissima) seed oil using base catalyst. Jurnal Teknik Mesin 11, 85–90 (2009)

    Google Scholar 

  9. Woldu, A.R., Ashagrie, Y.N., Tsigie, Y.A.: Bioethanol production from avocado seed wastes using Saccharomyces cerevisiae. Am. J. Environ. Energy Power Res. 3, 1–9 (2015)

    Google Scholar 

  10. Bressani, R., Rodas, B., Ruiz, A.S.: La Composición Química, Capacidad Antioxidativa y Valor Nutritivo de la Semilla de Variedades de Aguacate, 61p. http://glifos.concyt.gob.gt/digital/fodecyt/fodecyt%202006.02.pdf (2009). Accessed 04 Dec 2015

  11. Rodrigues, L.A., da Silva, M.L.C.P., Alvarez-Mendes, M.O., Coutinho, A.D.R., Thim, G.P.: Phenol removal from aqueous solution by activated carbon produced from avocado kernel seeds. Chem. Eng. J. 174, 49–57 (2011)

    Article  Google Scholar 

  12. Elizalde-González, M.P., Mattusch, J., Peláez-Cid, A.A., Wennrich, R.: Characterization of adsorbent materials prepared from avocado kernel seeds: natural, activated and carbonized forms. J. Anal. Appl. Pyrol. 78, 185–193 (2007)

    Article  Google Scholar 

  13. Mohan, D., Pittman, C.U., Steele, P.H.: Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20, 848–889 (2006)

    Article  Google Scholar 

  14. Lewis, I.C.: Chemistry of carbonization. Carbon 20, 519–529 (1982)

    Article  Google Scholar 

  15. Oberlin, A.: Carbonization and graphitization. Carbon 22, 521–541 (1984)

    Article  Google Scholar 

  16. Chen, W., Peng, J., Bi, X.T.: A state-of-the-art review of biomass torrefaction, densification and applications. Renew. Sustain. Energy Rev. 44, 847–866 (2015)

    Article  Google Scholar 

  17. Strandberg, M., Olofsson, I., Pommer, L., Wiklund-Lindström, S., Åberg, K., Nordin, A.: Effects of temperature and residence time on continuous torrefaction of spruce wood. Fuel Process. Technol. 134, 387–398 (2015)

    Article  Google Scholar 

  18. Kim, Y., Lee, S., Lee, H., Lee, J.: Physical and chemical characteristics of products from the torrefaction of yellow poplar (Liriodendron tulipifera). Bioresour. Technol. 116, 120–125 (2012)

    Article  Google Scholar 

  19. Bridgeman, T.G., Jones, J.M., Shield, I., Williams, P.T.: Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 87, 844–856 (2008)

    Article  Google Scholar 

  20. Rousset, P., Aguiar, C., Labbé, N., Commandré, J.: Enhancing the combustible properties of bamboo by torrefaction. Bioresour. Technol. 102, 8225–8231 (2011)

    Article  Google Scholar 

  21. Uslu, A., Faaij, A.P.C., Bergman, P.C.A.: Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation. Energy 33, 1206–1223 (2008)

    Article  Google Scholar 

  22. Wu, Y., Zhao, Z., Li, H., He, F.: Low temperature pyrolysis characteristics of major components of biomass. J. Fuel Chem. Technol. 37, 427–432 (2009)

    Article  Google Scholar 

  23. Kan, T., Strezov, V., Evans, T.J.: Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew. Sustain. Energy Rev. 57, 1126–1140 (2016)

    Article  Google Scholar 

  24. Chen, G., Liu, C., Ma, W., Zhang, X., Li, Y., Yan, B., Zhou, W.: Co-pyrolysis of corn cob and waste cooking oil in a fixed bed. Bioresour. Technol. 166, 500–507 (2014)

    Article  Google Scholar 

  25. Ro, K.S., Hunt, P.G., Jackson, M.A., Compton, D.L., Yates, S.R., Cantrell, K., Chang, S.: Co-pyrolysis of swine manure with agricultural plastic waste: laboratory-scale study. Waste Manag 34, 1520–1528 (2014)

    Article  Google Scholar 

  26. Subedi, R., Taupe, N., Ikoyi, I., Bertora, C., Zavattaro, L., Schmalenberger, A., Leahy, J.J., Grignani, C.: Chemically and biologically-mediated fertilizing value of manure-derived biochar. Sci. Total Environ. 550, 924–933 (2016)

    Article  Google Scholar 

  27. Janković, B.: Devolatilization kinetics of swine manure solid pyrolysis using deconvolution procedure. Determination of the bio-oil/liquid yields and char gasification. Fuel Process. Technol. 138, 1–13 (2015)

    Article  Google Scholar 

  28. Dewayanto, N., Isha, R., Nordin, M.R.: Use of palm oil decanter cake as a new substrate for the production of bio-oil by vacuum pyrolysis. Energy Convers. Manag. 86, 226–232 (2014)

    Article  Google Scholar 

  29. Wang, T., Ye, X., Yin, J., Jin, Z., Lu, Q., Zheng, Z., Dong, C.: Fast pyrolysis product distribution of biopretreated corn stalk by methanogen. Bioresour. Technol. 169, 812–815 (2014)

    Article  Google Scholar 

  30. Smets, K., Schreurs, S., Carleer, R., Yperman, J.: Valorization of raspberry seed cake by flash and slow pyrolysis: product yield and characterization of the liquid and solid fraction. J. Anal. Appl. Pyrol. 107, 289–297 (2014)

    Article  Google Scholar 

  31. Francavilla, M., Kamaterou, P., Intini, S., Monteleone, M., Zabaniotou, A.: Cascading microalgae biorefinery: fast pyrolysis of Dunaliella tertiolecta lipid extracted-residue. Algal Res. 11, 184–193 (2015)

    Article  Google Scholar 

  32. Choi, J., Choi, J., Suh, D.J., Ha, J., Hwang, J.W., Jung, H.W., Lee, K., Woo, H.: Production of brown algae pyrolysis oils for liquid biofuels depending on the chemical pretreatment methods. Energy Convers. Manag. 86, 371–378 (2014)

    Article  Google Scholar 

  33. Al-Hothaly, K.A., Adetutu, E.M., Taha, M., Fabbri, D., Lorenzetti, C., Conti, R., May, B.H., Shar, S.S., Bayoumi, R.A., Ball, A.S.: Bio-harvesting and pyrolysis of the microalgae Botryococcus braunii. Bioresour. Technol. 191, 117–123 (2015)

    Article  Google Scholar 

  34. Wu, K., Liu, J., Wu, Y., Chen, Y., Li, Q., Xiao, X., Yang, M.: Pyrolysis characteristics and kinetics of aquatic biomass using thermogravimetric analyzer. Bioresour. Technol. 163, 18–25 (2014)

    Article  Google Scholar 

  35. Liu, X., Li, Z., Zhang, Y., Feng, R., Mahmood, I.B.: Characterization of human manure-derived biochar and energy-balance analysis of slow pyrolysis process. Waste Manag 34, 1619–1626 (2014)

    Article  Google Scholar 

  36. Durak, H., Aysu, T.: Effect of pyrolysis temperature and catalyst on production of bio-oil and bio-char from avocado seeds. Res. Chem. Intermed. 41, 8067–8097 (2014)

    Article  Google Scholar 

  37. Asociación Española de Normalización y Certificación—AENOR: UNE-EN 14774-2:2010: Solid Biofuels—Determination of Moisture Content—Oven Dry Method—Part 2: Total Moisture—Simplified Method (2010)

  38. Asociación Española de Normalización y Certificación—AENOR: UNE-EN 15148:2010: Solid Biofuels—Determination of the Content of Volatile Matter (2010)

  39. Asociación Española de Normalización y Certificación—AENOR: UNE-EN 14775:2010: Solid Biofuels—Determination of Ash Content (2010)

  40. Asociación Española de Normalización y Certificación—AENOR: UNE-EN 14918:2011: Solid Biofuels—Determination of Calorific Value (2011)

  41. Deutsches Institut für Normung—(DIN): Testing of Solid and Liquid Fuels—Determination of Gross Calorific Value by the Bomb Calorimeter and Calculation of Net Calorific Value: DIN 51900 (2000)

  42. Asociación Española de Normalización y Certificación—AENOR: UNE-EN 15104:2011: Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen—Instrumental Methods (2011)

  43. American Society for Testing Materials—ASTM: ASTM D2395—14e1: Standard Test Methods for Density and Specific Gravity (Relative Density) of Wood and Wood-Based Materials (2014)

  44. Asociación Española de Normalización y Certificación—AENOR: UNE-EN 15103:2010: Solid Biofuels—Determination of Bulk Density (2010)

  45. Asociación Española de Normalización y Certificación—AENOR: UNE-EN 15149-2:2011: Solid Biofuels—Determination of Particle Size Distribution—Part 2: Vibrating Screen Method Using Sieve Apertures of 3,15 mm and Below (2011)

  46. Asociación Española de Normalización y Certificación—AENOR: UNE-EN ISO 16472:2007: Animal Feeding Stuffs—Determination of Amylase-Treated Neutral Detergent Fibre Content (aNDF) (2007)

  47. Asociación Española de Normalización y Certificación—AENOR: UNE-EN ISO 13906:2009: Animal Feeding Stuffs—Determination of Acid Detergent Fibre (ADF) and Acid Detergent Lignin (ADL) Contents (2009)

  48. Association of Analytical Communities—AOAC: AOAC 996.11-2005, Starch (total) in Cereal Products (2005)

  49. American Society for Testing Materials—ASTM: ASTM E203-08: Standard Test Method for Water Using Volumetric Karl Fischer Titration (2008)

  50. Lee, S.M., Lee, J.: Optimization of biomass torrefaction conditions by the gain and loss method and regression model analysis. Bioresour. Technol. 172, 438–443 (2014)

    Article  Google Scholar 

  51. Nachenius, R.W., van de Wardt, T.A., Ronsse, F., Prins, W.: Torrefaction of pine in a bench-scale screw conveyor reactor. Biomass Bioenergy 79, 96–104 (2015)

    Article  Google Scholar 

  52. Builders, P.F., Nnurum, A., Mbah, C.C., Attama, A.A., Manek, R.: The physicochemical and binder properties of starch from Persea americana Miller (Lauraceae). Starch Stärke 62, 309–320 (2010)

    Article  Google Scholar 

  53. Chel-Guerrero, L., Barbosa-Martín, E., Martínez-Antonio, A., González-Mondragón, E., Betancur-Ancona, D.: Some physicochemical and rheological properties of starch isolated from avocado seeds. Int. J. Biol. Macromol. 86, 302–308 (2016)

    Article  Google Scholar 

  54. Gómez, S.F., Sánchez, P.S., Iradi, G.M., Azman, A.N., Almajano, P.M.: Avocado seeds: extraction optimization and possible use as antioxidant in food. Antioxidants 3, 439–454 (2014)

    Article  Google Scholar 

  55. Eggleston, G., Trask-Morrell, B., Vercellotti, J.R.: Use of differential scanning calorimetry and thermogravimetric analysis to characterize the thermal degradation of crystalline sucrose and dried sucrose salt residues. J. Agric. Food Chem. 44, 3319–3325 (1996)

    Article  Google Scholar 

  56. Chen, H., Dou, B., Song, Y., Xu, Y., Zhang, Y., Wang, C., Zhang, X., Tan, C.: Pyrolysis characteristics of sucrose biomass in a tubular reactor and a thermogravimetric analysis. Fuel 95, 425–430 (2012)

    Article  Google Scholar 

  57. Mohebby, B.: Attenuated total reflection infrared spectroscopy of white-rot decayed beech wood. Int. Biodeterior. Biodegrad. 55, 247–251 (2005)

    Article  Google Scholar 

  58. Luo, L., Xu, C., Chen, Z., Zhang, S.: Properties of biomass-derived biochars: Combined effects of operating conditions and biomass types. Bioresour. Technol. 192, 83–89 (2015)

    Article  Google Scholar 

  59. Harris, K., Gaskin, J., Cabrera, M., Miller, W., Das, K.C.: Characterization and mineralization rates of low temperature peanut hull and pine chip biochars. Agronomy 3, 294–312 (2013)

    Article  Google Scholar 

  60. Leng, L., Yuan, X., Zeng, G., Shao, J., Chen, X., Wu, Z., Wang, H., Peng, X.: Surface characterization of rice husk bio-char produced by liquefaction and application for cationic dye (Malachite green) adsorption. Fuel 155, 77–85 (2015)

    Article  Google Scholar 

  61. Herbert, L., Hosek, I., Kripalani, R., Vanasupa, L.: The characterization and comparison of biochar produced from a decentralized reactor using forced air and natural draft pyrolysis. http://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1047&context=matesp; (2012). Accessed 07 July 2015

  62. van Krevelen, D.W.: Graphical-statistical method for the study of structure and reaction processes of coal. Fuel 29, 269–284 (1950)

    Google Scholar 

  63. Brewer, C.E., Chuang, V.J., Masiello, C.A., Gonnermann, H., Gao, X., Dugan, B., Driver, L.E., Panzacchi, P., Zygourakis, K., Davies, C.A.: New approaches to measuring biochar density and porosity. Biomass Bioenergy 66, 176–185 (2014)

    Article  Google Scholar 

  64. Sanginés, P., Domínguez, M.P., Sánchez, F., San Miguel, G.: Slow pyrolysis of olive stone in a rotary kiln: chemical and energy characterization of solid, gas, and condensable products. J. Renew. Sustain. Energy 7(4), 043103 (2015)

    Article  Google Scholar 

  65. Gómez, N., Rosas, J.G., Cara, J., Martínez, O., Alburquerque, J.A., Sánchez, M.E.: Slow pyrolysis of relevant biomasses in the Mediterranean basin. Part 1. Effect of temperature on process performance on a pilot scale. J. Clean. Prod. 120, 181–190 (2016)

    Article  Google Scholar 

  66. Moralı, U., Şensöz, S.: Pyrolysis of hornbeam shell (Carpinus betulus L.) in a fixed bed reactor: characterization of bio-oil and bio-char. Fuel 150, 672–678 (2015)

    Article  Google Scholar 

  67. Dewayanto, N., Isha, R., Nordin, M.R.: Use of palm oil decanter cake as a new substrate for the production of bio-oil by vacuum pyrolysis. Energy Convers. Manag. 86, 226–232 (2014)

    Article  Google Scholar 

  68. Uçar, S., Karagöz, S.: The slow pyrolysis of pomegranate seeds: The effect of temperature on the product yields and bio-oil properties. J. Anal. Appl. Pyrol. 84, 151–156 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the European Commission for financial support under Marie Curie Actions (Grant Agreement No 318927) and to Universidad Politécnica de Madrid for financial support under Projects AL13-PID-16 and AL14-PID-18 for Research Activities with Latin America. We are also grateful to restaurant Punto MX (Madrid, Spain) and to Frumaco SL (Málaga, Spain) for provision of avocado seeds and sector data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. San Miguel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez, F., Araus, K., Domínguez, M.P. et al. Thermochemical Transformation of Residual Avocado Seeds: Torrefaction and Carbonization. Waste Biomass Valor 8, 2495–2510 (2017). https://doi.org/10.1007/s12649-016-9699-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9699-6

Keywords

Navigation