Skip to main content
Log in

High Added-Value Compounds with Antibacterial Properties from Ginja Cherries By-products

  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

To test the antimicrobial properties of the extracts of stems and leaves of Ginja cherry plant. Both stems and leaves are waste in the production of the cherry liquor and they could be valorised by extracting valuable compounds, making the process more environmentally sustainable.

Methods

The ethanol extracts from both stems and leaves were analysed by LC-ESI/MS to determine the phenolic composition. They were tested against Gram positive and Gram negative bacteria (Bacillus subtilis, Staphylococcus aureus MSSA, Staphylococcus aureus MRSA, Pseudomonas sp., Pseudomonas aeruginosa, Flavobacterium sp., Escherichia coli, Salmonella), using the disk diffusion technique and the broth dilution technique.

Results

The extracts showed good antibacterial properties towards Gram positive and Gram negative bacteria. The values of the Minimum Inhibitory Concentration (MIC) were lower for Gram positive bacteria (10–15 mg/ml) than for Gram negative ones (10–100 mg/ml). The values of Minimum Bactericidal Concentration (MBC) were between 2 and 4 times higher than the MICs.

Conclusions

The waste from Ginja cherry plants can be successfully employed to extract valuable compounds such as polyphenols, with antibacterial properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. European Commission: Study on the feasibility of the establishment of a Waste Implementation Agency. http://ec.europa.eu/environment/waste/index.htm (2010). Accessed 24 Feb 2010

  2. European Commission: Directive 2008/98/EC on waste (Waste Framework Directive). http://ec.europa.eu/environment/waste/framework/index.htm (2010). Accessed 24 Feb 2010

  3. Lule, S.U., Xia, W.: Food phenolics, pros and cons: a review. Food Rev. Int. 21, 367–388 (2005)

    Article  Google Scholar 

  4. Eastwood, M.A.: Interaction of dietary antioxidants in vivo: how fruit and vegetables prevent disease. QJM 92, 527–530 (1999)

    Article  Google Scholar 

  5. Middleton, E.: Effect of plant flavonoids on immune and inflammatory cell function. Adv. Exp. Med. Biol. 439, 175–182 (1998)

    Google Scholar 

  6. Taguri, T., Tanaka, T., Kound, I.: Antibacterial spectrum of plants polyphenols and extracts depending upon hydroxyphenyl structure. Biol. Pharm. Bull. 29(11), 2226–2235 (2006)

    Article  Google Scholar 

  7. Moure, A., Cruz, M.C., Franco, D., Domingues, J.M., Sineiro, J., Dominguez, E., Nuñez, M.J., Parajó, J.C.: Natural antioxidant from residual sources. Food Chem. 72, 145–171 (2001)

    Article  Google Scholar 

  8. Lesage-Meessen, L., Navarro, D., Maunier, S., Sigolloit, J.C., Lorquin, J., Delattre, M., Simon, J.L., Ashter, M., Labat, M.: Simple phenolic content in olive oil residues as a function of the extraction system. Food Chem. 75, 501–507 (2001)

    Article  Google Scholar 

  9. Obied, H.K., Bedgood, D.R. Jr, Prenzler, P.D., Robards, K.: Bioscreening of Australian olive mill waste extracts: biophenol content, antioxidant, antimicrobial and molluscicidial activities. Food Chem. Toxicol. 45, 1238–1248 (2007)

    Article  Google Scholar 

  10. Sudjana, A.N., D’Orazio, C., Ryan, V., Rasool, N., Ng, J., Islam, N., Riley, T.V., Hammer, K.A.: Antimicrobial activity of commercial Olea europea (olive) leaf extract. Int. J. Antimicrob. Agents 33, 461–463 (2009)

    Article  Google Scholar 

  11. Peschel, W., Sanchez-Rabaneda, F., Diekmann, W., Plescher, A., Gartzia, I., Jimenez, D., Lamuela-Raventos, R., Buxaderas, S., Codina, C.: An industrial approach in the search of natural antioxidants from vegetable and fruit wastes. Food Chem. 97(1), 137–150 (2006)

    Article  Google Scholar 

  12. Wijngaard, H.H., Rossle, C., Brunton, N.: A survey of Irish fruit and vegetable waste and by-products as a source of polyphenols antioxidants. Food Chem. 116, 202–207 (2009)

    Article  Google Scholar 

  13. Pereira, J.A., Oliveira, I., Sousa, A., Valenta, P., Andrade, P.B., Ferreira, I.C.F.R., Ferreres, F., Bento, A., Seabra, R., Estevinho, L.: Walnut (Juglans regia L.) leaves: phenolic compounds, antibacterial activity and antioxidant potential of different cultivars. Food Chem. Toxicol. 45, 2287–2295 (2007)

    Article  Google Scholar 

  14. Kumar, P.S., Kumar, A., Sivakumar, R., Kaushik, C.: Experimentation on solvent extracts from natural waste. J. Mater. Sci. 44, 5894–5899 (2009)

    Article  Google Scholar 

  15. Demiray S., Pintado M.M., Castro P.M.L.: High value added compounds with antioxidant activities from Ginja cherries, stems and leaves. EFFOST conference, Budapest, 11–13 Nov 2009

  16. Bauer, A.W., Kirby, W.M., Sherries, J.C., Turck, M.: Antibiotic susceptibility testing by a standardised single method. Am. J. Clin. Pathol. 45, 493–496 (1966)

    Google Scholar 

  17. Moreno, S., Scheyer, T., Romano, C.S., Vojnov, A.A.: Antioxidant and antimicrobial activity of rosemary extracts linked to their polyphenolic composition. Free Radic. Res. 40(2), 223–231 (2006)

    Article  Google Scholar 

  18. Lao, R.C., Shu, Y.Y., Holmes, J., Chiu, C.: Environmental sample cleaning and extraction procedures by microwave-assisted process (MAP) technology. Microchem. J. 53(1), 99–108 (1996)

    Article  Google Scholar 

  19. Herald, P.J., Davidson, P.M.: Antibacterial activity of selected hydrocinnamic acid. J. Food Sci. 48(4), 1378–1379 (2006)

    Article  Google Scholar 

  20. Liu, K., Tsao, S., Yin, M.: In vitro antibacterial activity of roselle calyx and protocatechuic acid. Phytother. Res. 19(11), 942–945 (2006)

    Article  MATH  Google Scholar 

  21. Denny, B.J., West, P.W., Mathew, T.C.: Antagonistic interactions between the flavonoids hesperetin and naringenin and beta-lactam antibiotics against Staphylococcus aureus. Br. J. Biomed. Sci. 65(3), 145–147 (2008)

    Google Scholar 

  22. Kajiya, K., Hojo, H., Suzuki, M., Nanjo, F., Kumazawa, S., Nakayama, T.: Relationship between antibacterial activity of (+)-catechin derivatives and their interaction with a model membrane. J. Agric. Food Chem. 52, 1514–1519 (2004)

    Article  Google Scholar 

  23. Nazaruk, J., Czechowska, S.K., Markiewicz, R., Borawska, M.H.: Polyphenolic compounds and in vitro antimicrobial and antioxidant activity of aqueous extracts from leaves of some Cirsium species. Nat. Prod. Res. 22(18), 1583–1588 (2008)

    Article  Google Scholar 

  24. Franco, A.R., Calheiros, C.S.C., Pacheco, C.C., De Marco, P., Manaia, C.M., Castro, P.M.L.: Isolation and characterisation of polymeric galloyl-ester-degrading bacteria from a tannery discharge place. Microb. Ecol. 50, 550–556 (2005)

    Article  Google Scholar 

  25. Chung, K.T., Lu, Z., Chou, M.W.: Mechanism of inhibition of tannin acid and related compounds on the growth of intestinal bacteria. Food Chem. Toxicol. 36(12), 104–1060 (1998)

    Google Scholar 

  26. Munoz, M., Guevara, L., Palop, A., Tabera, J., Fernandez, P.S.: Determination of the effect of plant essential oils obtained by supercritical fluid extraction on the growth and viability of Listeria monocytogenes in broth and food systems using flow cytometry. LWT Food Sci. Technol. 42, 220–227 (2009)

    Article  Google Scholar 

  27. Karanika, M.S., Komaitis, M., Aggelis, G.: Effect of aqueous extracts of some plants of Lamiaceae family on the growth of Yarrowia lipolytica. Int. J. Food Microbiol. 64, 175–181 (2001)

    Article  Google Scholar 

  28. Furiga, A., Lonvaud-Funel, A., Dorigna, G., Badet, C.: In vitro anti-bacterial and anti-adherence effects of natural polyphenolic compounds on oral bacteria. J. Appl. Microbiol. 105, 1470–1476 (2008)

    Article  Google Scholar 

  29. Sasaki, H., Matsumoto, M., Tanaka, T., Maeda, M., Nakai, M., Hamada, S., Ooshima, T.: Antibacterial activity of polyphenol components in oolong tea extracts against Streptococcus mutans. Caries Res. 38(1), 2–8 (2004)

    Article  Google Scholar 

  30. Romano, C.S., Anadi, K., Repetto, V., Vojnov, A.A., Moreno, S.: Synergistic antioxidant and antibacterial activity of rosemary plus butylated derivatives. Food Chem. 115(2), 456–461 (2009)

    Article  Google Scholar 

Download references

Acknowledgement

This work was performed within the InSolEx network (Innovative Solutions for Extracting High Value Natural Compounds) funded by the European Union, contract MRT-CT-2006-036053.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Pintado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piccirillo, C., Demiray, S., Franco, A.R. et al. High Added-Value Compounds with Antibacterial Properties from Ginja Cherries By-products. Waste Biomass Valor 1, 209–217 (2010). https://doi.org/10.1007/s12649-010-9019-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-010-9019-5

Keywords

Navigation