Skip to main content

Advertisement

Log in

DNA Damage in Major Psychiatric Diseases

  • Review
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Human cells are exposed to exogenous insults and continuous production of different metabolites. These insults and unwanted metabolic products might interfere with the stability of genomic DNA. Recently, many studies have demonstrated that different psychiatric disorders show substantially high levels of oxidative DNA damage in the brain accompanied with morphological and functional alterations. It reveals that damaged genomic DNA may contribute to the pathophysiology of these mental illnesses. In this article, we review the roles of oxidative damage and reduced antioxidant ability in some vastly studied psychiatric disorders and emphasize the inclusion of treatment options involving DNA repair. In addition, while most currently used antidepressants are based on the manipulation of the neurotransmitter regulation in managing different mental abnormalities, they are able to prevent or reverse neurotoxin-induced DNA damage. Therefore, it may be plausible to target on genomic DNA alterations for psychiatric therapies, which is of pivotal importance for future antipsychiatric drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

H2O2 :

Hydrogen peroxide

8-oxodG:

8-Oxo-7,8-dihydro-2′-dihydroguanosine

8-oxoGuo:

8-Oxo-7,8-dihydroguanosine

MDD:

Major depression disorder

mtDNA:

Mitochondrial DNA

NO:

Nitric oxide

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  • Abdel-Salam OME, Morsy SMY, Sleem AA (2011) The effect of different antidepressant drugs on oxidative stress after lipopolysaccharide administration in mice. EXCLI J 10:290–302

    Google Scholar 

  • Abdel-Wahab BA, Salama RH (2011) Venlafaxine protects against stress-induced oxidative DNA damage in hippocampus during antidepressant testing in mice. Pharmacol Biochem Behav 100:59–65

    Article  CAS  PubMed  Google Scholar 

  • Aboul-Fotouh S (2013) Coenzyme Q10 displays antidepressant-like activity with reduction of hippocampal oxidative/nitrosative DNA damage in chronically stressed rats. Pharmacol Biochem Behav 104:105–112

    Article  CAS  PubMed  Google Scholar 

  • Adachi S, Kawamura K, Takemoto K (1993) Oxidative damage of nuclear DNA in liver of rats exposed to psychological stress. Cancer Res 53:4153–4155

    CAS  PubMed  Google Scholar 

  • Altuntas I, Aksoy H, Coskun I, Caykoylu A, Akcay F (2000) Erythrocyte superoxide dismutase and glutathione peroxidase activities, and malondialdehyde and reduced glutathione levels in schizophrenic patients. Clin Chem Lab Med 38:1277–1281

    Article  CAS  PubMed  Google Scholar 

  • Anderson IM, Haddad PM, Scott J (2012) Bipolar disorder. BMJ 345:e8508

    Article  PubMed  Google Scholar 

  • Andreazza AC, Frey BN, Erdtmann B, Salvador M, Rombaldi F, Santin A, Goncalves CA, Kapczinski F (2007) DNA damage in bipolar disorder. Psychiatry Res 153:27–32

    Article  CAS  PubMed  Google Scholar 

  • Andreazza AC, Kauer-Sant’Anna M, Frey BN et al (2008) Effects of mood stabilizers on DNA damage in an animal model of mania. J Psychiatry Neurosci 33:516–524

    PubMed  PubMed Central  Google Scholar 

  • Andreazza AC, Shao L, Wang JF, Young LT (2010) Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen Psychiatry 67:360–368

    Article  CAS  PubMed  Google Scholar 

  • Anticevic A, Gancsos M, Murray JD et al (2012) NMDA receptor function in large-scale anticorrelated neural systems with implications for cognition and schizophrenia. Proc Natl Acad Sci USA 109:16720–16725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behr GA, Moreira JC, Frey BN (2012) Preclinical and clinical evidence of antioxidant effects of antidepressant agents: implications for the pathophysiology of major depressive disorder. Oxidative Med Cell longev 2012:609421

    Article  CAS  Google Scholar 

  • Belmaker RH, Agam G (2008) Major depressive disorder. N Engl J Med 358:55–68

    Article  CAS  PubMed  Google Scholar 

  • Bender RE, Alloy LB (2011) Life stress and kindling in bipolar disorder: review of the evidence and integration with emerging biopsychosocial theories. Clin Psychol Rev 31:383–398

    Article  PubMed  PubMed Central  Google Scholar 

  • Benes FM (1997) The role of stress and dopamine-GABA interactions in the vulnerability for schizophrenia. J Psychiatr Res 31:257–275

    Article  CAS  PubMed  Google Scholar 

  • Benes FM, Matzilevich D, Burke RE, Walsh J (2006) The expression of proapoptosis genes is increased in bipolar disorder, but not in schizophrenia. Mol Psychiatry 11:241–251

    Article  CAS  PubMed  Google Scholar 

  • Berk M (2009) Neuroprogression: pathways to progressive brain changes in bipolar disorder. Int J Neuropsychopharmacol 12:441–445

    Article  CAS  PubMed  Google Scholar 

  • Berk M, Copolov DL, Dean O, Lu K, Jeavons S, Schapkaitz I, Anderson-Hunt M, Bush AI (2008) N-acetyl cysteine for depressive symptoms in bipolar disorder–a double-blind randomized placebo-controlled trial. Biol Psychiatry 64:468–475

    Article  CAS  PubMed  Google Scholar 

  • Berk M, Kapczinski F, Andreazza AC et al (2011) Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev 35:804–817

    Article  CAS  PubMed  Google Scholar 

  • Bernstein HG, Krause S, Krell D et al (2007a) Strongly reduced number of parvalbumin-immunoreactive projection neurons in the mammillary bodies in schizophrenia: further evidence for limbic neuropathology. Ann N Y Acad Sci 1096:120–127

    Article  CAS  PubMed  Google Scholar 

  • Bernstein HG, Sahin J, Smalla KH, Gundelfinger ED, Bogerts B, Kreutz MR (2007b) A reduced number of cortical neurons show increased Caldendrin protein levels in chronic schizophrenia. Schizophr Res 96:246–256

    Article  PubMed  Google Scholar 

  • Berretta S, Pantazopoulos H, Lange N (2007) Neuron numbers and volume of the amygdala in subjects diagnosed with bipolar disorder or schizophrenia. Biol Psychiatry 62:884–893

    Article  PubMed  Google Scholar 

  • Bertolino A, Frye M, Callicott JH, Mattay VS, Rakow R, Shelton-Repella J, Post R, Weinberger DR (2003) Neuronal pathology in the hippocampal area of patients with bipolar disorder: a study with proton magnetic resonance spectroscopic imaging. Biol Psychiatry 53:906–913

    Article  PubMed  Google Scholar 

  • Bilici M, Efe H, Koroglu MA, Uydu HA, Bekaroglu M, Deger O (2001) Antioxidative enzyme activities and lipid peroxidation in major depression: alterations by antidepressant treatments. J Affect Disord 64:43–51

    Article  CAS  PubMed  Google Scholar 

  • Bitanihirwe BK, Woo TU (2011) Oxidative stress in schizophrenia: an integrated approach. Neurosci Biobehav Rev 35:878–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Black CN, Bot M, Scheffer PG, Cuijpers P, Penninx BW (2015) Is depression associated with increased oxidative stress? A systematic review and meta-analysis. Psychoneuroendocrinology 51:164–175

    Article  CAS  PubMed  Google Scholar 

  • Boskovic M, Vovk T, Kores Plesnicar B, Grabnar I (2011) Oxidative stress in schizophrenia. Curr Neuropharmacol 9:301–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley-Whitman M, Lovell M (2013) Increased oxidative dramage in RNA in alzheimer’s disease progression. J Anal Bioanal Tech S2(004):1–9

    Google Scholar 

  • Bregeon D, Sarasin A (2005) Hypothetical role of RNA damage avoidance in preventing human disease. Mutat Res 577:293–302

    Article  CAS  PubMed  Google Scholar 

  • Bremner JD, Narayan M, Anderson ER, Staib LH, Miller HL, Charney DS (2000) Hippocampal volume reduction in major depression. Am J Psychiatry 157:115–118

    Article  CAS  PubMed  Google Scholar 

  • Briley M, Moret C (1993) Neurobiological mechanisms involved in antidepressant therapies. Clin Neuropharmacol 16:387–400

    Article  CAS  PubMed  Google Scholar 

  • Brown GR, McBride L, Bauer MS, Williford WO (2005) Impact of childhood abuse on the course of bipolar disorder: a replication study in U.S. veterans. J Affect Disord 89:57–67

    Article  PubMed  Google Scholar 

  • Brown NC, Andreazza AC, Young LT (2014) An updated meta-analysis of oxidative stress markers in bipolar disorder. Psychiatry Res 218:61–68

    Article  CAS  PubMed  Google Scholar 

  • Buckman TD, Kling AS, Eiduson S, Sutphin MS, Steinberg A (1987) Glutathione peroxidase and CT scan abnormalities in schizophrenia. Biol Psychiatry 22:1349–1356

    Article  CAS  PubMed  Google Scholar 

  • Butler SG, Meegan MJ (2008) Recent developments in the design of anti-depressive therapies: targeting the serotonin transporter. Curr Med Chem 15:1737–1761

    Article  CAS  PubMed  Google Scholar 

  • Buttner N, Bhattacharyya S, Walsh J, Benes FM (2007) DNA fragmentation is increased in non-GABAergic neurons in bipolar disorder but not in schizophrenia. Schizophr Res 93:33–41

    Article  PubMed  PubMed Central  Google Scholar 

  • Cabungcal JH, Steullet P, Kraftsik R, Cuenod M, Do KQ (2013) Early-life insults impair parvalbumin interneurons via oxidative stress: reversal by N-acetylcysteine. Biol Psychiatry 73:574–582

    Article  CAS  PubMed  Google Scholar 

  • Cadet J, Douki T, Ravanat JL (2008) Oxidatively generated damage to the guanine moiety of DNA: mechanistic aspects and formation in cells. Acc Chem Res 41:1075–1083

    Article  CAS  PubMed  Google Scholar 

  • Carboni L (2013) Peripheral biomarkers in animal models of major depressive disorder. Dis Markers 35:33–41

    Article  PubMed  PubMed Central  Google Scholar 

  • Cardozo-Pelaez F, Brooks PJ, Stedeford T, Song S, Sanchez-Ramos J (2000) DNA damage, repair, and antioxidant systems in brain regions: a correlative study. Free Radic Biol Med 28:779–785

    Article  CAS  PubMed  Google Scholar 

  • Cecil KM, DelBello MP, Morey R, Strakowski SM (2002) Frontal lobe differences in bipolar disorder as determined by proton MR spectroscopy. Bipolar Disord 4:357–365

    Article  CAS  PubMed  Google Scholar 

  • Chang CC, Jou SH, Lin TT, Liu CS (2014) Mitochondrial DNA variation and increased oxidative damage in euthymic patients with bipolar disorder. Psychiatry Clin Neurosci 68:551–557

    Article  CAS  PubMed  Google Scholar 

  • Chang CC, Jou SH, Lin TT, Lai TJ, Liu CS (2015) Mitochondria DNA change and oxidative damage in clinically stable patients with major depressive disorder. PLoS One 10:e0125855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Che Y, Wang JF, Shao L, Young T (2010) Oxidative damage to RNA but not DNA in the hippocampus of patients with major mental illness. J Psychiatry Neurosci 35:296–302

    Article  PubMed  PubMed Central  Google Scholar 

  • Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61:192–208

    Article  CAS  PubMed  Google Scholar 

  • Chung CP, Schmidt D, Stein CM, Morrow JD, Salomon RM (2013) Increased oxidative stress in patients with depression and its relationship to treatment. Psychiatry Res 206:213–216

    Article  CAS  PubMed  Google Scholar 

  • Consiglio AR, Ramos AL, Henriques JA, Picada JN (2010) DNA brain damage after stress in rats. Prog Neuropsychopharmacol Biol Psychiatry 34:652–656

    Article  CAS  PubMed  Google Scholar 

  • Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214

    Article  CAS  PubMed  Google Scholar 

  • Coppede F, Migliore L (2015) DNA damage in neurodegenerative diseases. Mutat Res 776:84–97

    Article  CAS  PubMed  Google Scholar 

  • Cuijpers P, Vogelzangs N, Twisk J, Kleiboer A, Li J, Penninx BW (2014) Comprehensive meta-analysis of excess mortality in depression in the general community versus patients with specific illnesses. Am J Psychiatry 171:453–462

    Article  PubMed  Google Scholar 

  • Czarny P, Kwiatkowski D, Galecki P et al (2015a) Association between single nucleotide polymorphisms of MUTYH, hOGG1 and NEIL1 genes, and depression. J Affect Disord 184:90–96

    Article  CAS  PubMed  Google Scholar 

  • Czarny P, Kwiatkowski D, Kacperska D et al (2015b) Elevated level of DNA damage and impaired repair of oxidative DNA damage in patients with recurrent depressive disorder. Med Sci Monit 21:412–418

    Article  PubMed  PubMed Central  Google Scholar 

  • de Sousa RT, Uno M, Zanetti MV, Shinjo SM, Busatto GF, Gattaz WF, Marie SK, Machado-Vieira R (2014) Leukocyte mitochondrial DNA copy number in bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 48:32–35

    Article  PubMed  CAS  Google Scholar 

  • Dexheimer TS (2013) DNA repai pathways and mechanisms. In: Mathews LA, Cabarcas SM, Hurt EM (eds) DNA repair of cancer stem cells. Springer, Dordrecht, pp 19–32

    Chapter  Google Scholar 

  • Dietrich-Muszalska A, Olas B (2009) Modifications of blood platelet proteins of patients with schizophrenia. Platelets 20:90–96

    Article  CAS  PubMed  Google Scholar 

  • Do KQ, Trabesinger AH, Kirsten-Kruger M, Lauer CJ, Dydak U, Hell D, Holsboer F, Boesiger P, Cuenod M (2000) Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur J Neurosci 12:3721–3728

    Article  CAS  PubMed  Google Scholar 

  • Du J, Wang Y, Hunter R et al (2009) Dynamic regulation of mitochondrial function by glucocorticoids. Proc Natl Acad Sci USA 106:3543–3548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duman RS, Li N (2012) A neurotrophic hypothesis of depression: role of synaptogenesis in the actions of NMDA receptor antagonists. Philos Trans Royal Soc London 367:2475–2484

    Article  CAS  Google Scholar 

  • Ettinger U, Meyhofer I, Steffens M, Wagner M, Koutsouleris N (2014) Genetics, cognition, and neurobiology of schizotypal personality: a review of the overlap with schizophrenia. Front Psychiatry 5:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans MD, Dizdaroglu M, Cooke MS (2004) Oxidative DNA damage and disease: induction, repair and significance. Mutat Res 567:1–61

    Article  CAS  PubMed  Google Scholar 

  • Fleckenstein AE, Volz TJ, Riddle EL, Gibb JW, Hanson GR (2007) New insights into the mechanism of action of amphetamines. Annu Rev Pharmacol Toxicol 47:681–698

    Article  CAS  PubMed  Google Scholar 

  • Flint MS, Carroll JE, Jenkins FJ, Chambers WH, Han ML, Baum A (2005) Genomic profiling of restraint stress-induced alterations in mouse T lymphocytes. J Neuroimmunol 167:34–44

    Article  CAS  PubMed  Google Scholar 

  • Flint MS, Baum A, Chambers WH, Jenkins FJ (2007) Induction of DNA damage, alteration of DNA repair and transcriptional activation by stress hormones. Psychoneuroendocrinology 32:470–479

    Article  CAS  PubMed  Google Scholar 

  • Forlenza MJ, Miller GE (2006) Increased serum levels of 8-hydroxy-2′-deoxyguanosine in clinical depression. Psychosom Med 68:1–7

    Article  CAS  PubMed  Google Scholar 

  • Forsberg K, Aalling N, Wortwein G, Loft S, Moller P, Hau J, Hageman I, Jorgensen MB, Jorgensen A (2015) Dynamic regulation of cerebral DNA repair genes by psychological stress. Mutat Res 778:37–43

    Article  CAS  Google Scholar 

  • Frey BN, Andreazza AC, Kunz M, Gomes FA, Quevedo J, Salvador M, Goncalves CA, Kapczinski F (2007) Increased oxidative stress and DNA damage in bipolar disorder: a twin-case report. Prog Neuropsychopharmacol Biol Psychiatry 31:283–285

    Article  CAS  PubMed  Google Scholar 

  • Friedman R, Caflisch A (2010) On the orientation of the catalytic dyad in aspartic proteases. Proteins 78:1575–1582

    CAS  PubMed  Google Scholar 

  • Galecki P, Szemraj J, Bienkiewicz M, Florkowski A, Galecka E (2009a) Lipid peroxidation and antioxidant protection in patients during acute depressive episodes and in remission after fluoxetine treatment. Pharmacological Rep 61:436–447

    Article  CAS  Google Scholar 

  • Galecki P, Szemraj J, Bienkiewicz M, Zboralski K, Galecka E (2009b) Oxidative stress parameters after combined fluoxetine and acetylsalicylic acid therapy in depressive patients. Hum Psychopharmacol 24:277–286

    Article  CAS  PubMed  Google Scholar 

  • Gama CS, Salvador M, Andreazza AC, Lobato MI, Berk M, Kapczinski F, Belmonte-de-Abreu PS (2008) Elevated serum thiobarbituric acid reactive substances in clinically symptomatic schizophrenic males. Neurosci Lett 433:270–273

    Article  CAS  PubMed  Google Scholar 

  • Gardiner J, Barton D, Overall R, Marc J (2009) Neurotrophic support and oxidative stress: converging effects in the normal and diseased nervous system. The Neurosci 15:47–61

    CAS  Google Scholar 

  • Gardner A, Johansson A, Wibom R, Nennesmo I, von Dobeln U, Hagenfeldt L, Hallstrom T (2003) Alterations of mitochondrial function and correlations with personality traits in selected major depressive disorder patients. J Affect Disord 76:55–68

    Article  CAS  PubMed  Google Scholar 

  • Gaur V, Kumar A (2010) Protective effect of desipramine, venlafaxine and trazodone against experimental animal model of transient global ischemia: possible involvement of NO-cGMP pathway. Brain Res 1353:204–212

    Article  CAS  PubMed  Google Scholar 

  • Geddes JR, Cipriani A (2004) Selective serotonin reuptake inhibitors. BMJ 329:809–810

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilgun-Sherki Y, Melamed E, Offen D (2001) Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 40:959–975

    Article  CAS  PubMed  Google Scholar 

  • Gillman PK (2007) Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol 151:737–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gispen-de Wied CC (2000) Stress in schizophrenia: an integrative view. Eur J Pharmacol 405:375–384

    Article  CAS  PubMed  Google Scholar 

  • Glaser R, Thorn BE, Tarr KL, Kiecolt-Glaser JK, D’Ambrosio SM (1985) Effects of stress on methyltransferase synthesis: an important DNA repair enzyme. Health Psychol 4:403–412

    Article  CAS  PubMed  Google Scholar 

  • Grima G, Benz B, Parpura V, Cuenod M, Do KQ (2003) Dopamine-induced oxidative stress in neurons with glutathione deficit: implication for schizophrenia. Schizophr Res 62:213–224

    Article  PubMed  Google Scholar 

  • Guidotti A, Auta J, Davis JM et al (2000) Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry 57:1061–1069

    Article  CAS  PubMed  Google Scholar 

  • Gysin R, Kraftsik R, Sandell J et al (2007) Impaired glutathione synthesis in schizophrenia: convergent genetic and functional evidence. Proc Natl Acad Sci USA 104:16621–16626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harman D (1981) The aging process. Proc Natl Acad Sci USA 78:7124–7128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10:40–68

    Article  CAS  PubMed  Google Scholar 

  • Henriksen T, Hillestrom PR, Poulsen HE, Weimann A (2009) Automated method for the direct analysis of 8-oxo-guanosine and 8-oxo-2′-deoxyguanosine in human urine using ultraperformance liquid chromatography and tandem mass spectrometry. Free Radic Biol Med 47:629–635

    Article  CAS  PubMed  Google Scholar 

  • Herken H, Gurel A, Selek S et al (2007) Adenosine deaminase, nitric oxide, superoxide dismutase, and xanthine oxidase in patients with major depression: impact of antidepressant treatment. Arch Med Res 38:247–252

    Article  CAS  PubMed  Google Scholar 

  • Hirose K, Chan PH (1993) Blockade of glutamate excitotoxicity and its clinical applications. Neurochem Res 18:479–483

    Article  CAS  PubMed  Google Scholar 

  • Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411:366–374

    Article  CAS  PubMed  Google Scholar 

  • Holsboer F (2000) The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 23:477–501

    Article  CAS  PubMed  Google Scholar 

  • Howes OD, Montgomery AJ, Asselin MC et al (2009) Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch Gen Psychiatry 66:13–20

    Article  PubMed  Google Scholar 

  • Hu Y, Russek SJ (2008) BDNF and the diseased nervous system: a delicate balance between adaptive and pathological processes of gene regulation. J Neurochem 105:1–17

    Article  CAS  PubMed  Google Scholar 

  • Hu CW, Chao MR, Sie CH (2010) Urinary analysis of 8-oxo-7,8-dihydroguanine and 8-oxo-7,8-dihydro-2′-deoxyguanosine by isotope-dilution LC-MS/MS with automated solid-phase extraction: study of 8-oxo-7,8-dihydroguanine stability. Free Radic Biol Med 48:89–97

    Article  CAS  PubMed  Google Scholar 

  • Inoue A, Kawakami N, Ishizaki M, Tabata M, Tsuchiya M, Akiyama M, Kitazume A, Kuroda M, Shimazu A (2009) Three job stress models/concepts and oxidative DNA damage in a sample of workers in Japan. J Psychosom Res 66:329–334

    Article  PubMed  Google Scholar 

  • Irie M, Asami S, Nagata S, Miyata M, Kasai H (2001) Relationships between perceived workload, stress and oxidative DNA damage. Int Arch Occup Environ Health 74:153–157

    Article  CAS  PubMed  Google Scholar 

  • Irie M, Asami S, Nagata S, Miyata M, Kasai H (2002) Psychological mediation of a type of oxidative DNA damage, 8-hydroxydeoxyguanosine, in peripheral blood leukocytes of non-smoking and non-drinking workers. Psychother Psychosom 71:90–96

    Article  PubMed  Google Scholar 

  • Irie M, Asami S, Ikeda M, Kasai H (2003) Depressive state relates to female oxidative DNA damage via neutrophil activation. Biochem Biophys Res Commun 311:1014–1018

    Article  CAS  PubMed  Google Scholar 

  • Irie M, Miyata M, Kasai H (2005) Depression and possible cancer risk due to oxidative DNA damage. J Psychiatr Res 39:553–560

    Article  PubMed  Google Scholar 

  • Jesberger JA, Richardson JS (1991) Oxygen free radicals and brain dysfunction. Int J Neurosci 57:1–17

    Article  CAS  PubMed  Google Scholar 

  • Joergensen A, Broedbaek K, Weimann A, Semba RD, Ferrucci L, Joergensen MB, Poulsen HE (2011) Association between urinary excretion of cortisol and markers of oxidatively damaged DNA and RNA in humans. PLoS One 6:e20795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson SL (2005) Life events in bipolar disorder: towards more specific models. Clin Psychol Rev 25:1008–1027

    Article  PubMed  PubMed Central  Google Scholar 

  • Jorgensen A, Broedbaek K, Fink-Jensen A et al (2013a) Increased systemic oxidatively generated DNA and RNA damage in schizophrenia. Psychiatry Res 209:417–423

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen A, Krogh J, Miskowiak K et al (2013b) Systemic oxidatively generated DNA/RNA damage in clinical depression: associations to symptom severity and response to electroconvulsive therapy. J Affect Disord 149:355–362

    Article  CAS  PubMed  Google Scholar 

  • Kakiuchi C, Ishiwata M, Kametani M, Nelson C, Iwamoto K, Kato T (2005) Quantitative analysis of mitochondrial DNA deletions in the brains of patients with bipolar disorder and schizophrenia. Int J Neuropsychopharmacol 8:515–522

    Article  CAS  PubMed  Google Scholar 

  • Kalia M (2005) Neurobiological basis of depression: an update. Metabolism 54:24–27

    Article  CAS  PubMed  Google Scholar 

  • Kapczinski F, Dal-Pizzol F, Teixeira AL et al (2010) A systemic toxicity index developed to assess peripheral changes in mood episodes. Mol Psychiatry 15:784–786

    Article  CAS  PubMed  Google Scholar 

  • Kapczinski F, Dal-Pizzol F, Teixeira AL et al (2011) Peripheral biomarkers and illness activity in bipolar disorder. J Psychiatr Res 45:156–161

    Article  PubMed  Google Scholar 

  • Katyal S, McKinnon PJ (2008) DNA strand breaks, neurodegeneration and aging in the brain. Mech Ageing Dev 129:483–491

    Article  CAS  PubMed  Google Scholar 

  • Kempermann G, Kronenberg G (2003) Depressed new neurons—adult hippocampal neurogenesis and a cellular plasticity hypothesis of major depression. Biol Psychiatry 54:499–503

    Article  PubMed  Google Scholar 

  • Khairova R, Pawar R, Salvadore G et al (2012) Effects of lithium on oxidative stress parameters in healthy subjects. Mol Med Rep 5:680–682

    CAS  PubMed  Google Scholar 

  • Khanzode SD, Dakhale GN, Khanzode SS, Saoji A, Palasodkar R (2003) Oxidative damage and major depression: the potential antioxidant action of selective serotonin re-uptake inhibitors. Redox Rep 8:365–370

    Article  CAS  PubMed  Google Scholar 

  • Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30:620–650

    Article  CAS  PubMed  Google Scholar 

  • Korotkova EI, Misini B, Dorozhko EV, Bukkel MV, Plotnikov EV, Linert W (2011) Study of OH radicals in human serum blood of healthy individuals and those with pathological schizophrenia. Int J Mol Sci 12:401–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnadas R, Cavanagh J (2012) Depression: an inflammatory illness? J Neurol Neurosurg Psychiatry 83:495–502

    Article  PubMed  Google Scholar 

  • Krohne-Ehrich G, Schirmer RH, Untucht-Grau R (1977) Glutathione reductase from human erythrocytes. Isolation of the enzyme and sequence analysis of the redox-active peptide. Eur J Biochem 80:65–71

    Article  CAS  PubMed  Google Scholar 

  • Kryston TB, Georgiev AB, Pissis P, Georgakilas AG (2011) Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res 711:193–201

    Article  CAS  PubMed  Google Scholar 

  • Kupfer DJ (2005) The increasing medical burden in bipolar disorder. JAMA 293:2528–2530

    Article  CAS  PubMed  Google Scholar 

  • Kuratomi G, Iwamoto K, Bundo M, Kusumi I, Kato N, Iwata N, Ozaki N, Kato T (2008) Aberrant DNA methylation associated with bipolar disorder identified from discordant monozygotic twins. Mol Psychiatry 13:429–441

    Article  CAS  PubMed  Google Scholar 

  • Lee BT, Seok JH, Lee BC, Cho SW, Yoon BJ, Lee KU, Chae JH, Choi IG, Ham BJ (2008) Neural correlates of affective processing in response to sad and angry facial stimuli in patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 32:778–785

    Article  PubMed  Google Scholar 

  • Lee SY, Lee SJ, Han C, Patkar AA, Masand PS, Pae CU (2013) Oxidative/nitrosative stress and antidepressants: targets for novel antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 46:224–235

    Article  CAS  PubMed  Google Scholar 

  • Leuner K, Schulz K, Schutt T et al (2012) Peripheral mitochondrial dysfunction in Alzheimer’s disease: focus on lymphocytes. Mol Neurobiol 46:194–204

    Article  CAS  PubMed  Google Scholar 

  • Leverich GS, McElroy SL, Suppes T et al (2002) Early physical and sexual abuse associated with an adverse course of bipolar illness. Biol Psychiatry 51:288–297

    Article  PubMed  Google Scholar 

  • Lewis DA, Levitt P (2002) Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 25:409–432

    Article  CAS  PubMed  Google Scholar 

  • Lewis DA, Lieberman JA (2000) Catching up on schizophrenia: natural history and neurobiology. Neuron 28:325–334

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Wu J, Deleo CJ (2006) RNA damage and surveillance under oxidative stress. IUBMB Life 58:581–588

    Article  CAS  PubMed  Google Scholar 

  • Lidow MS (2003) Calcium signaling dysfunction in schizophrenia: a unifying approach. Brain Res Brain Res Rev 43:70–84

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Wang X, Shigenaga MK, Yeo HC, Mori A, Ames BN (1996) Immobilization stress causes oxidative damage to lipid, protein, and DNA in the brain of rats. FASEB J 10:1532–1538

    CAS  PubMed  Google Scholar 

  • Liu CS, Tsai CS, Kuo CL, Chen HW, Lii CK, Ma YS, Wei YH (2003) Oxidative stress-related alteration of the copy number of mitochondrial DNA in human leukocytes. Free Radic Res 37:1307–1317

    Article  CAS  PubMed  Google Scholar 

  • Lloyd RV, Hanna PM, Mason RP (1997) The origin of the hydroxyl radical oxygen in the Fenton reaction. Free Radic Biol Med 22:885–888

    Article  CAS  PubMed  Google Scholar 

  • Loidl-Stahlhofen A, Hannemann K, Spiteller G (1994) Generation of alpha-hydroxyaldehydic compounds in the course of lipid peroxidation. Biochim Biophys Acta 1213:140–148

    Article  CAS  PubMed  Google Scholar 

  • Madabhushi R, Pan L, Tsai LH (2014) DNA damage and its links to neurodegeneration. Neuron 83:266–282

    Article  CAS  PubMed  Google Scholar 

  • Madrigal JL, Olivenza R, Moro MA, Lizasoain I, Lorenzo P, Rodrigo J, Leza JC (2001) Glutathione depletion, lipid peroxidation and mitochondrial dysfunction are induced by chronic stress in rat brain. Neuropsychopharmacology 24:420–429

    Article  CAS  PubMed  Google Scholar 

  • Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E (2009a) Increased 8-hydroxy-deoxyguanosine, a marker of oxidative damage to DNA, in major depression and myalgic encephalomyelitis/chronic fatigue syndrome. Neuro Endocrinol Lett 30:715–722

    CAS  PubMed  Google Scholar 

  • Maes M, Yirmyia R, Noraberg J et al (2009b) The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis 24:27–53

    Article  CAS  PubMed  Google Scholar 

  • Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E (2010) Increased plasma peroxides and serum oxidized low density lipoprotein antibodies in major depression: markers that further explain the higher incidence of neurodegeneration and coronary artery disease. J Affect Disord 125:287–294

    Article  CAS  PubMed  Google Scholar 

  • Maes M, Galecki P, Chang YS, Berk M (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry 35:676–692

    Article  CAS  PubMed  Google Scholar 

  • Mahadik SP, Mukherjee S (1996) Free radical pathology and antioxidant defense in schizophrenia: a review. Schizophr Res 19:1–17

    Article  CAS  PubMed  Google Scholar 

  • Maher BA, Manschreck TC, Woods BT, Yurgelun-Todd DA, Tsuang MT (1995) Frontal brain volume and context effects in short-term recall in schizophrenia. Biol Psychiatry 37:144–150

    Article  CAS  PubMed  Google Scholar 

  • Malberg JE, Blendy JA (2005) Antidepressant action: to the nucleus and beyond. Trends Pharmacol Sci 26:631–638

    Article  CAS  PubMed  Google Scholar 

  • Manaye KF, Lei DL, Tizabi Y, Davila-Garcia MI, Mouton PR, Kelly PH (2005) Selective neuron loss in the paraventricular nucleus of hypothalamus in patients suffering from major depression and bipolar disorder. J Neuropathol Exp Neurol 64:224–229

    Article  PubMed  Google Scholar 

  • Manji H, Kato T, Di Prospero NA, Ness S, Beal MF, Krams M, Chen G (2012) Impaired mitochondrial function in psychiatric disorders. Nat Rev Neurosci 13:293–307

    CAS  PubMed  Google Scholar 

  • Martin LJ (2008) DNA damage and repair: relevance to mechanisms of neurodegeneration. J Neuropathol Exp Neurol 67:377–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massaad CA, Klann E (2011) Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid Redox Signal 14:2013–2054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushita M, Kumano-Go T, Suganuma N et al (2010) Anxiety, neuroticism and oxidative stress: cross-sectional study in non-smoking college students. Psychiatry Clin Neurosci 64:435–441

    Article  PubMed  Google Scholar 

  • Maurer I, Zierz S, Moller H (2001) Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia. Schizophr Res 48:125–136

    Article  CAS  PubMed  Google Scholar 

  • McCord JM, Fridovich I (1988) Superoxide dismutase: the first twenty years (1968-1988). Free Radic Biol Med 5:363–369

    Article  CAS  PubMed  Google Scholar 

  • McEwen BS (1998) Protective and damaging effects of stress mediators. N Engl J Med 338:171–179

    Article  CAS  PubMed  Google Scholar 

  • McMillan TJ, Leatherman E, Ridley A, Shorrocks J, Tobi SE, Whiteside JR (2008) Cellular effects of long wavelength UV light (UVA) in mammalian cells. J Pharm Pharmacol 60:969–976

    Article  CAS  PubMed  Google Scholar 

  • Michel TM, Thome J, Martin D, Nara K, Zwerina S, Tatschner T, Weijers HG, Koutsilieri E (2004) Cu, Zn- and Mn-superoxide dismutase levels in brains of patients with schizophrenic psychosis. J Neural Transm (Vienna) 111:1191–1201

    CAS  Google Scholar 

  • Michel TM, Frangou S, Thiemeyer D, Camara S, Jecel J, Nara K, Brunklaus A, Zoechling R, Riederer P (2007) Evidence for oxidative stress in the frontal cortex in patients with recurrent depressive disorder–a postmortem study. Psychiatry Res 151:145–150

    Article  CAS  PubMed  Google Scholar 

  • Michel TM, Camara S, Tatschner T, Frangou S, Sheldrick AJ, Riederer P, Grunblatt E (2010) Increased xanthine oxidase in the thalamus and putamen in depression. World J Biol Psychiatry 11:314–320

    Article  PubMed  Google Scholar 

  • Michel TM, Pulschen D, Thome J (2012) The role of oxidative stress in depressive disorders. Curr Pharm Des 18:5890–5899

    Article  CAS  PubMed  Google Scholar 

  • Middleton FA, Mirnics K, Pierri JN, Lewis DA, Levitt P (2002) Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia. J Neurosci 22:2718–2729

    CAS  PubMed  Google Scholar 

  • Muller N, Schwarz MJ (2007) The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol Psychiatry 12:988–1000

    Article  CAS  PubMed  Google Scholar 

  • Munkholm K, Poulsen HE, Kessing LV, Vinberg M (2015) Elevated levels of urinary markers of oxidatively generated DNA and RNA damage in bipolar disorder. Bipolar Disord 17:257–268

    Article  CAS  PubMed  Google Scholar 

  • Muraleedharan A, Menon V, Rajkumar RP, Chand P (2015) Assessment of DNA damage and repair efficiency in drug naive schizophrenia using comet assay. J Psychiatr Res 68:47–53

    Article  PubMed  Google Scholar 

  • Mustak MS, Hegde ML, Dinesh A, Britton GB, Berrocal R, Subba Rao K, Shamasundar NM, Rao KS, Sathyanarayana Rao TS (2010) Evidence of altered DNA integrity in the brain regions of suicidal victims of Bipolar Depression. Indian J Psychiatry 52:220–228

    Article  PubMed  PubMed Central  Google Scholar 

  • Ng F, Berk M, Dean O, Bush AI (2008) Oxidative stress in psychiatric disorders: evidence base and therapeutic implications. Int J Neuropsychopharmacol 11:851–876

    Article  CAS  PubMed  Google Scholar 

  • Nishioka N, Arnold SE (2004) Evidence for oxidative DNA damage in the hippocampus of elderly patients with chronic schizophrenia. Am J Geriatr Psychiatry 12:167–175

    Article  PubMed  Google Scholar 

  • Norman RM, Malla AK (1994) A prospective study of daily stressors and symptomatology in schizophrenic patients. Soc Psychiatry Psychiatr Epidemiol 29:244–249

    Article  CAS  PubMed  Google Scholar 

  • Nuechterlein KH, Dawson ME, Gitlin M, Ventura J, Goldstein MJ, Snyder KS, Yee CM, Mintz J (1992) Developmental processes in schizophrenic disorders: longitudinal studies of vulnerability and stress. Schizophr Bull 18:387–425

    Article  CAS  PubMed  Google Scholar 

  • Nunomura A, Hofer T, Moreira PI, Castellani RJ, Smith MA, Perry G (2009) RNA oxidation in Alzheimer disease and related neurodegenerative disorders. Acta Neuropathol 118:151–166

    Article  CAS  PubMed  Google Scholar 

  • Olney JW, Newcomer JW, Farber NB (1999) NMDA receptor hypofunction model of schizophrenia. J Psychiatr Res 33:523–533

    Article  CAS  PubMed  Google Scholar 

  • O’Neill P, Wardman P (2009) Radiation chemistry comes before radiation biology. Int J Radiat Biol 85:9–25

    Article  PubMed  CAS  Google Scholar 

  • Opresko PL, Fan J, Danzy S, Wilson DM 3rd, Bohr VA (2005) Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2. Nucleic Acids Res 33:1230–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozcan ME, Gulec M, Ozerol E, Polat R, Akyol O (2004) Antioxidant enzyme activities and oxidative stress in affective disorders. Int Clin Psychopharmacol 19:89–95

    Article  PubMed  Google Scholar 

  • Padurariu M, Ciobica A, Dobrin I, Stefanescu C (2010) Evaluation of antioxidant enzymes activities and lipid peroxidation in schizophrenic patients treated with typical and atypical antipsychotics. Neurosci Lett 479:317–320

    Article  CAS  PubMed  Google Scholar 

  • Palta P, Samuel LJ, Miller ER 3rd, Szanton SL (2014) Depression and oxidative stress: results from a meta-analysis of observational studies. Psychosom Med 76:12–19

    Article  CAS  PubMed  Google Scholar 

  • Pandya CD, Howell KR, Pillai A (2013) Antioxidants as potential therapeutics for neuropsychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 46:214–223

    Article  CAS  PubMed  Google Scholar 

  • Popken GJ, Bunney WE Jr, Potkin SG, Jones EG (2000) Subnucleus-specific loss of neurons in medial thalamus of schizophrenics. Proc Natl Acad Sci USA 97:9276–9280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prabakaran S, Swatton JE, Ryan MM et al (2004) Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 9(684–697):643

    Article  Google Scholar 

  • Radak Z, Boldogh I (2010) 8-Oxo-7,8-dihydroguanine: links to gene expression, aging, and defense against oxidative stress. Free Radic Biol Med 49:587–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raffa M, Mechri A, Othman LB, Fendri C, Gaha L, Kerkeni A (2009) Decreased glutathione levels and antioxidant enzyme activities in untreated and treated schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry 33:1178–1183

    Article  CAS  PubMed  Google Scholar 

  • Ranjekar PK, Hinge A, Hegde MV, Ghate M, Kale A, Sitasawad S, Wagh UV, Debsikdar VB, Mahadik SP (2003) Decreased antioxidant enzymes and membrane essential polyunsaturated fatty acids in schizophrenic and bipolar mood disorder patients. Psychiatry Res 121:109–122

    Article  CAS  PubMed  Google Scholar 

  • Rao KS (1993) Genomic damage and its repair in young and aging brain. Mol Neurobiol 7:23–48

    Article  CAS  PubMed  Google Scholar 

  • Reddy R, Keshavan M, Yao JK (2003) Reduced plasma antioxidants in first-episode patients with schizophrenia. Schizophr Res 62:205–212

    Article  PubMed  Google Scholar 

  • Regenold WT, Phatak P, Marano CM, Sassan A, Conley RR, Kling MA (2009) Elevated cerebrospinal fluid lactate concentrations in patients with bipolar disorder and schizophrenia: implications for the mitochondrial dysfunction hypothesis. Biol Psychiatry 65:489–494

    Article  CAS  PubMed  Google Scholar 

  • Reynolds LM, Reynolds GP (2011) Differential regional N-acetylaspartate deficits in postmortem brain in schizophrenia, bipolar disorder and major depressive disorder. J Psychiatr Res 45:54–59

    Article  PubMed  Google Scholar 

  • Rezin GT, Amboni G, Zugno AI, Quevedo J, Streck EL (2009) Mitochondrial dysfunction and psychiatric disorders. Neurochem Res 34:1021–1029

    Article  CAS  PubMed  Google Scholar 

  • Robinson LJ, Ferrier IN (2006) Evolution of cognitive impairment in bipolar disorder: a systematic review of cross-sectional evidence. Bipolar Disord 8:103–116

    Article  PubMed  Google Scholar 

  • Rosell DR, Futterman SE, McMaster A, Siever LJ (2014) Schizotypal personality disorder: a current review. Curr Psychiatry Rep 16:452

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenfeld M, Brenner-Lavie H, Ari SG, Kavushansky A, Ben-Shachar D (2011) Perturbation in mitochondrial network dynamics and in complex I dependent cellular respiration in schizophrenia. Biol Psychiatry 69:980–988

    Article  CAS  PubMed  Google Scholar 

  • Rouse J, Jackson SP (2002) Interfaces between the detection, signaling, and repair of DNA damage. Science 297:547–551

    Article  CAS  PubMed  Google Scholar 

  • Rybka J, Kedziora-Kornatowska K, Banas-Lezanska P, Majsterek I, Carvalho LA, Cattaneo A, Anacker C, Kedziora J (2013) Interplay between the pro-oxidant and antioxidant systems and proinflammatory cytokine levels, in relation to iron metabolism and the erythron in depression. Free Radic Biol Med 63C:187–194

    Article  CAS  Google Scholar 

  • Sabunciyan S, Kirches E, Krause G, Bogerts B, Mawrin C, Llenos IC, Weis S (2007) Quantification of total mitochondrial DNA and mitochondrial common deletion in the frontal cortex of patients with schizophrenia and bipolar disorder. J Neural Transm (Vienna) 114:665–674

    Article  CAS  Google Scholar 

  • Sapolsky RM (1996) Why stress is bad for your brain. Science 273:749–750

    Article  CAS  PubMed  Google Scholar 

  • Sapolsky RM (2000) The possibility of neurotoxicity in the hippocampus in major depression: a primer on neuron death. Biol Psychiatry 48:755–765

    Article  CAS  PubMed  Google Scholar 

  • Satterlee JS, Barbee S, Jin P, Krichevsky A, Salama S, Schratt G, Wu DY (2007) Noncoding RNAs in the brain. J Neurosci 27:11856–11859

    Article  CAS  PubMed  Google Scholar 

  • Savitz JB, Price JL, Drevets WC (2014) Neuropathological and neuromorphometric abnormalities in bipolar disorder: view from the medial prefrontal cortical network. Neurosci Biobehav Rev 42:132–147

    Article  CAS  PubMed  Google Scholar 

  • Sawa A, Snyder SH (2002) Schizophrenia: diverse approaches to a complex disease. Science 296:692–695

    Article  CAS  PubMed  Google Scholar 

  • Saxowsky TT, Doetsch PW (2006) RNA polymerase encounters with DNA damage: transcription-coupled repair or transcriptional mutagenesis? Chem Rev 106:474–488

    Article  CAS  PubMed  Google Scholar 

  • Scapagnini G, Davinelli S, Drago F, De Lorenzo A, Oriani G (2012) Antioxidants as antidepressants: fact or fiction? CNS Drugs 26:477–490

    Article  CAS  PubMed  Google Scholar 

  • Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122:509–522

    Article  CAS  PubMed  Google Scholar 

  • Schultz SH, North SW, Shields CG (2007) Schizophrenia: a review. Am Fam Phys 75:1821–1829

    Google Scholar 

  • Schwartz TL, Sachdeva S, Stahl SM (2012) Genetic data supporting the NMDA glutamate receptor hypothesis for schizophrenia. Curr Pharm Des 18:1580–1592

    Article  CAS  PubMed  Google Scholar 

  • Sertan Copoglu U, Virit O, Hanifi Kokacya M et al (2015) Increased oxidative stress and oxidative DNA damage in non-remission schizophrenia patients. Psychiatry Res 229:200–205

    Article  CAS  PubMed  Google Scholar 

  • Shan X, Chang Y, Lin CL (2007) Messenger RNA oxidation is an early event preceding cell death and causes reduced protein expression. FASEB J 21:2753–2764

    Article  CAS  PubMed  Google Scholar 

  • Shao L, Young LT, Wang JF (2005) Chronic treatment with mood stabilizers lithium and valproate prevents excitotoxicity by inhibiting oxidative stress in rat cerebral cortical cells. Biol Psychiatry 58:879–884

    Article  CAS  PubMed  Google Scholar 

  • Shelton RC, Claiborne J, Sidoryk-Wegrzynowicz M, Reddy R, Aschner M, Lewis DA, Mirnics K (2011) Altered expression of genes involved in inflammation and apoptosis in frontal cortex in major depression. Mol Psychiatry 16:751–762

    Article  CAS  PubMed  Google Scholar 

  • Shiwaku H, Okazawa H (2015) Impaired DNA damage repair as a common feature of neurodegenerative diseases and psychiatric disorders. Curr Mol Med 15:119–128

    Article  CAS  PubMed  Google Scholar 

  • Simon NM, Smoller JW, McNamara KL, Maser RS, Zalta AK, Pollack MH, Nierenberg AA, Fava M, Wong KK (2006) Telomere shortening and mood disorders: preliminary support for a chronic stress model of accelerated aging. Biol Psychiatry 60:432–435

    Article  CAS  PubMed  Google Scholar 

  • Sirota P, Gavrieli R, Wolach B (2003) Overproduction of neutrophil radical oxygen species correlates with negative symptoms in schizophrenic patients: parallel studies on neutrophil chemotaxis, superoxide production and bactericidal activity. Psychiatry Res 121:123–132

    Article  CAS  PubMed  Google Scholar 

  • Smaga I, Niedzielska E, Gawlik M, Moniczewski A, Krzek J, Przegalinski E, Pera J, Filip M (2015) Oxidative stress as an etiological factor and a potential treatment target of psychiatric disorders. Part 2. Depression, anxiety, schizophrenia and autism. Pharmacological Rep 67:569–580

    Article  CAS  Google Scholar 

  • Soeiro-de-Souza MG, Andreazza AC, Carvalho AF, Machado-Vieira R, Young LT, Moreno RA (2013) Number of manic episodes is associated with elevated DNA oxidation in bipolar I disorder. Int J Neuropsychopharmacol 16:1505–1512

    Article  CAS  PubMed  Google Scholar 

  • Spassky A, Angelov D (1997) Influence of the local helical conformation on the guanine modifications generated from one-electron DNA oxidation. Biochemistry 36:6571–6576

    Article  CAS  PubMed  Google Scholar 

  • Stevens JR (1982) Neuropathology of schizophrenia. Arch Gen Psychiatry 39:1131–1139

    Article  CAS  PubMed  Google Scholar 

  • Subba Rao K (2007) Mechanisms of disease: DNA repair defects and neurological disease. Nat Clin Pract Neurol 3:162–172

    Article  PubMed  CAS  Google Scholar 

  • Suberbielle E, Sanchez PE, Kravitz AV, Wang X, Ho K, Eilertson K, Devidze N, Kreitzer AC, Mucke L (2013) Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-beta. Nat Neurosci 16:613–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taly A (2013) Novel approaches to drug design for the treatment of schizophrenia. Expert Opin Drug Discov 8:1285–1296

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Chock PB, Stadtman ER (2007) Oxidized messenger RNA induces translation errors. Proc Natl Acad Sci USA 104:66–71

    Article  CAS  PubMed  Google Scholar 

  • Tatsumi M, Groshan K, Blakely RD, Richelson E (1997) Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol 340:249–258

    Article  CAS  PubMed  Google Scholar 

  • Teyssier JR, Ragot S, Chauvet-Gelinier JC, Trojak B, Bonin B (2011) Expression of oxidative stress-response genes is not activated in the prefrontal cortex of patients with depressive disorder. Psychiatry Res 186:244–247

    Article  CAS  PubMed  Google Scholar 

  • Tice RR, Agurell E, Anderson D et al (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221

    Article  CAS  PubMed  Google Scholar 

  • Uemura T, Green M, Corson TW, Perova T, Li PP, Warsh JJ (2011) Bcl-2 SNP rs956572 associates with disrupted intracellular calcium homeostasis in bipolar I disorder. Bipolar Disord 13:41–51

    Article  CAS  PubMed  Google Scholar 

  • Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  PubMed  Google Scholar 

  • Vawter MP, Tomita H, Meng F et al (2006) Mitochondrial-related gene expression changes are sensitive to agonal-pH state: implications for brain disorders. Mol Psychiatry 11(615):663–679

    Article  CAS  Google Scholar 

  • Walker EF, Diforio D (1997) Schizophrenia: a neural diathesis-stress model. Psychol Rev 104:667–685

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Hilton BA, Cui K, Zhu MY (2015) Effects of antidepressants on DSP4/CPT-induced DNA damage response in neuroblastoma SH-SY5Y cells. Neurotox Res 28:154–170

    Article  CAS  PubMed  Google Scholar 

  • Ward JF (1988) DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol 35:95–125

    Article  CAS  PubMed  Google Scholar 

  • Wei YC, Zhou FL, He DL, Bai JR, Ding H, Wang XY, Nan KJ (2009) Oxidative stress in depressive patients with gastric adenocarcinoma. Int J Neuropsychopharmacol 12:1089–1096

    Article  CAS  PubMed  Google Scholar 

  • Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44:660–669

    Article  CAS  PubMed  Google Scholar 

  • Weinberger DR, Berman KF, Zec RF (1986) Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Arch Gen Psychiatry 43:114–124

    Article  CAS  PubMed  Google Scholar 

  • Wilson C, Gonzalez-Billault C (2015) Regulation of cytoskeletal dynamics by redox signaling and oxidative stress: implications for neuronal development and trafficking. Front Cell Neurosci 9:381

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu RM, Chiueh CC, Pert A, Murphy DL (1993) Apparent antioxidant effect of l-deprenyl on hydroxyl radical formation and nigral injury elicited by MPP + in vivo. Eur J Pharmacol 243:241–247

    Article  CAS  PubMed  Google Scholar 

  • Yager S, Forlenza MJ, Miller GE (2010) Depression and oxidative damage to lipids. Psychoneuroendocrinology 35:1356–1362

    Article  CAS  PubMed  Google Scholar 

  • Yamada S, Nomoto S, Fujii T, Kaneko T, Takeda S, Inoue S, Kanazumi N, Nakao A (2006) Correlation between copy number of mitochondrial DNA and clinico-pathologic parameters of hepatocellular carcinoma. Eur J Surg Oncol 32:303–307

    Article  CAS  PubMed  Google Scholar 

  • Yanik M, Erel O, Kati M (2004) The relationship between potency of oxidative stress and severity of depression. Acta Neuropsychiatr 16:200–203.

    Article  PubMed  Google Scholar 

  • Yao JK, Leonard S, Reddy RD (2004) Increased nitric oxide radicals in postmortem brain from patients with schizophrenia. Schizophr Bull 30:923–934

    Article  PubMed  Google Scholar 

  • Yi S, Nanri A, Matsushita Y, Kasai H, Kawai K, Mizoue T (2012) Depressive symptoms and oxidative DNA damage in Japanese municipal employees. Psychiatry Res 200:318–322.

    Article  CAS  Google Scholar 

  • Zafir A, Ara A, Banu N (2009) Invivo antioxidant status: a putative target of antidepressant action. Prog Neuropsychopharmacol Biol Psychiatry 33:220–228

    Article  CAS  PubMed  Google Scholar 

  • Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5:863–873

    Article  CAS  PubMed  Google Scholar 

  • Zhang XY, Tan YL, Cao LY, Wu GY, Xu Q, Shen Y, Zhou DF (2006) Antioxidant enzymes and lipid peroxidation in different forms of schizophrenia treated with typical and atypical antipsychotics. Schizophr Res 81:291–300

    Article  PubMed  Google Scholar 

  • Zhang P, Dilley C, Mattson MP (2007) DNA damage responses in neural cells: focus on the telomere. Neuroscience 145:1439–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Zhao Z, He L, Wan C (2010) A meta-analysis of oxidative stress markers in schizophrenia. Sci China 53:112–124

    Article  CAS  Google Scholar 

  • Zhang F, Zhou H, Wilson BC, Shi JS, Hong JS, Gao HM (2012) Fluoxetine protects neurons against microglial activation-mediated neurotoxicity. Parkinsonism Relat Dis 18(Suppl 1):S213–S217

    Article  Google Scholar 

  • Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408:433–439

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the NIH Grant MH080323.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng-Yang Zhu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest regarding the work reported here.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, M.U., Tufan, T., Wang, Y. et al. DNA Damage in Major Psychiatric Diseases. Neurotox Res 30, 251–267 (2016). https://doi.org/10.1007/s12640-016-9621-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-016-9621-9

Keywords

Navigation