Skip to main content

Advertisement

Log in

Impairment of Rat Spatial Learning and Memory in a New Model of Cold Water-Induced Chronic Hypothermia: Implication for Alzheimer’s Disease

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a primary neurodegenerative disorder associated with progressive memory impairment. Recent studies suggest that hypothermia may contribute to the development and exacerbation of AD. The aim of this study was to investigate the role of chronic hypothermia on spatial learning and memory performance as well as brain immunohistochemical (IHC) and molecular changes. Four groups of male rats were placed in cold water (3.5 ± 0.5 °C) once a day for 1, 3, 6, and 14 days, four other groups were placed in warm water (32 °C) as the control groups to eliminate the effect of swimming stress, and one more group which comprised intact animals that were kept in a normothermic situation and had no swimming stress. Twenty-four hours after the last intervention, spatial learning and memory were assessed, using the modified Morris water maze. After the behavioral test, the rats’ brains were removed for IHC and Western blotting. The results showed that memory retrieval is impaired after 14 days of cold water-induced hypothermia (CWH) (P < 0.05). IHC showed the formation of beta-amyloid plaques after a 14-day CWH. The molecular changes demonstrated that a 14-day CWH induces tau hyperphosphorylation, apoptosis, and reduces COX-II expression. Therefore, chronic CWH, independent of forced swimming stress, impairs learning and memory through molecular mechanisms similar to those of AD. In conclusion, CWH may serve as an important model to assess the role of hypothermia in AD pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmadian-Attari MM, Ahmadiani A, Kamalinejad M, Dargahi L, Mosaddegh M (2014) Chronic Cold-Water-Induced Hypothermia impairs memory retrieval and Nepeta menthoides as a traditional “Hot” herb reverses the impairment. Iran J Pharm Res 13:185–193

    Google Scholar 

  • Aid S, Langenbach R, Bosetti F (2008) Neuroinflammatory response to lipopolysaccharide is exacerbated in mice genetically deficient in cyclooxygenase-2. J Neuroinflamm 5:17. doi:10.1186/1742-2094-5-17

    Article  Google Scholar 

  • Aid S, Silva AC, Candelario-Jalil E, Choi SH, Rosenberg GA, Bosetti F (2010) Cyclooxygenase-1 and -2 differentially modulate lipopolysaccharide-induced blood-brain barrier disruption through matrix metalloproteinase activity. J Cereb Blood Flow Metab 30:370e380. doi: 10.1038/jcbfm.2009.223

  • Alzheimer’s Association (2012) Alzheimer’s disease facts and figures. pp 5 and 10. http://www.alz.org/downloads/facts_figures_2012.pdf, Accessed 8 Apr 2013

  • Augustinack JC, Schneider A, Mandelkow EM, Hyman BT (2002) Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol 103:26–35

    Article  CAS  PubMed  Google Scholar 

  • Austin BP, Nair VA, Meier TB, Xu G, Rowley HA, Carlsson CM, Johnson SC, Prabhakaran V (2011) Effects of hypoperfusion in Alzheimer’s disease. J Alzheimers Dis 26:S123–S133. doi:10.3233/JAD-2011-0010

    Google Scholar 

  • Avicenna (970–1051 AD) (2010) The Canon (Canon of Medicine), Persian translation of the critical arabic text, 9th edn. vol 3, Soroush Press, Tehran, pp 118–119

  • Blais V, Turrin NP, Rivest S (2005) Cyclooxygenase 2 (COX-2) inhibition increases the inflammatory response in the brain during systemic immune stimuli. J Neurochem 95:1563e1574

  • Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83:1153–1181

    Article  CAS  PubMed  Google Scholar 

  • Casadesus G, Arendash G, Laferla F, McDonald M (2010) Animal models of Alzheimer’s disease. Int J Alzheimers Dis. doi:10.4061/2010/606357

    PubMed Central  PubMed  Google Scholar 

  • Chen L, Wei J, Lei Z, Zhang L, Liu Y, Sun F (2005) Induction of Bcl-2 and Bax was related to hyperphosphorylation of tau and neuronal death induced by okadaic acid in rat brain. Anat Rec A 287:1236–1245

    Article  Google Scholar 

  • Cheng SX, Zhang S, Sun HT, Tu Y (2013) Effects of mild hypothermia treatment on rat hippocampal β-amyloid expression following traumatic brain injury. Ther Hypothermia Temp Manag 3:132–139

    Article  PubMed Central  PubMed  Google Scholar 

  • Choi SH, Aid S, Choi U, Bosetti F (2010) Cyclooxygenases-1 and -2 differentially modulate leukocyte recruitment into the inflamed brain. Pharmacogenom J 10:448–457. doi:10.1038/tpj.2009.68

    Article  CAS  Google Scholar 

  • Cowley TR, Fahey B, O’Mara SM (2008) COX-2, but not COX-1, activity is necessary for the induction of perforant path long-term potentiation and spatial learning in vivo. Eur J Neurosci 27:2999–3008. doi:10.1111/j.1460-9568.2008.06251.x

    Article  CAS  PubMed  Google Scholar 

  • Daulatzai MA (2010) Conversion of elderly to Alzheimer’s dementia: role of confluence of hypothermia and senescent stigmata—the plausible pathway. J Alzheimers Dis 21:1039–1063

    CAS  PubMed  Google Scholar 

  • Daulatzai MA (2013) Neurotoxic saboteurs: straws that break the hippo’s (hippocampus) back drive cognitive impairment and Alzheimer’s disease. Neurotox Res 24:407–459

    Article  CAS  PubMed  Google Scholar 

  • De Groote L, Linthorst ACE (2007) Exposure to novelty and forced swimming evoke stressor-dependent changes in extracellular GABA in the rat hippocampus. Neuroscience 148:794–805

    Article  PubMed  Google Scholar 

  • Dong Y, Wu X, Xu Z, Zhang Y, Xie Z (2012) Anesthetic isoflurane increases phosphorylated tau levels mediated by caspase activation and Aβ generation. PLoS One 7:e39386. doi:10.1371/journal.pone.0039386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Drugan RC, Eren S, Hazi A, Silva J, Christianson JP, Kent S (2005) Impact of water temperature and stressor controllability on swim stress-induced changes in body temperature, serum corticosterone, and immobility in rats. Pharmacol Biochem Behav 82:397–403

    Article  CAS  PubMed  Google Scholar 

  • Eberspacher E, Werner C, Engelhard K, Pape M, Gelb A, Hutzler P, Henke J, Kochs E (2003) The effect of hypothermia on the expression of the apoptosis-regulating protein Bax after incomplete cerebral ischemia and reperfusion in rats. J Neurosurg Anesthesiol 15:200–208

    Article  PubMed  Google Scholar 

  • Feng Q, Cheng B, Yang R, Sun F, Zhu C (2005) Dynamic changes of phosphorylated tau in mouse hippocampus after cold water stress. Neurosci Lett 388:13–16

    Article  CAS  PubMed  Google Scholar 

  • Frick KM, Stillner ET, Berger-Sweeney J (2000) Mice are not little rats: species differences in a one-day water maze task. Neuroreport 11:3461–3465

    Article  CAS  PubMed  Google Scholar 

  • Götz J, Ittner LM (2008) Animal models of Alzheimer’s disease and frontotemporal dementia. Nat Rev Neurosci 9:532–544. doi:10.1038/nrn2420

    Article  PubMed  Google Scholar 

  • Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12:383–388

    Article  CAS  PubMed  Google Scholar 

  • Hewett SJ, Bell SC, Hewett JA (2006) Contributions of cyclooxygenase-2 to neuroplasticity and neuropathology of the central nervous system. Pharmacol Ther 112:335e357

  • Holtzman A, Simon EW (2000) Body temperature as a risk factor for Alzheimer’s disease. Med Hypotheses 55:440–444

    Article  CAS  PubMed  Google Scholar 

  • Hoozemans J, van Haastert ES, Veerhuis R, Arendt T, Scheper W, Eikelenboom P, Rozemuller A (2005) Maximal COX-2 and ppRb expression in neurons occurs during early Braak stages prior to the maximal activation of astrocytes and microglia in Alzheimer’s disease. J Neuroinflamm 2:27

    Article  Google Scholar 

  • Idan-Feldman A, Ostritsky R, Gozes I (2012) Tau and caspase 3 as targets for neuroprotection. Int J Alzheimers Dis 2012:493670. doi:10.1155/2012/493670

    PubMed Central  PubMed  Google Scholar 

  • Kobayashi K, Nakanoa H, Hayashib M, Shimazakia M, Fukutanic Y, Sasakic K, Sugimoria K, Koshino Y (2003) Association of phosphorylation site of tau protein with neuronal apoptosis in Alzheimer’s disease. J Neurol Sci 208:17–24

    Article  CAS  PubMed  Google Scholar 

  • Korsmeyer SJ (1999) Bcl-2 gene family and the regulation of programmed cell death. Cancer Res 59:S1693–S1700

    Google Scholar 

  • Lenhardt R (2010) The effect of anesthesia on body temperature control. Front Biosci 2:1145–1154

    Article  Google Scholar 

  • Li Z, Sheng M (2012) Caspases in synaptic plasticity. Mol Brain 5:15. doi:10.1186/1756-6606-5-15

    Article  PubMed Central  PubMed  Google Scholar 

  • Lu SH, Lessure AR, Dai YT (2010) A systematic review of body temperature variations in older people. J Clin Nurs 19:4–16. doi:10.1111/j.1365-2702.2009.02945.x

    Article  PubMed  Google Scholar 

  • Ma H, Sinha B, Pandya RS, Lin N, Popp AJ, Li J, Yao J, Wang X (2012) Therapeutic hypothermia as a neuroprotective strategy in neonatal hypoxic-ischemic brain injury and traumatic brain injury. Curr Mol Med 12:1282–1296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Misonou H, Morishima-Kawashima M, Ihara Y (2000) Oxidative stress induces intracellular accumulation of amyloid beta-protein (Abeta) in human neuroblastoma cells. Biochemistry 39:6951–6959

    Article  CAS  PubMed  Google Scholar 

  • Moreira PI (2012) Alzheimer’s disease and diabetes: an integrative view of the role of mitochondria, oxidative stress, and insulin. J Alzheimers Dis 30:S199–S215. doi:10.3233/JAD-2011-111127

    PubMed  Google Scholar 

  • Moser E, Mathiesen I, Andersen P (1993) Association between brain temperature and dentate field potentials in exploring and swimming rats. Science 259:1324–1326

    Article  CAS  PubMed  Google Scholar 

  • Neil HA, Dawson JA, Baker JE (1986) Risk of hypothermia in elderly patients with diabetes. Br Med J 293:416–418

    Article  CAS  Google Scholar 

  • Okawa Y, Ishiguro K, Fujita SC (2003) Stress-induced hyperphosphorylation of tau in the mouse brain. FEBS Lett 535:183–189

    Article  CAS  PubMed  Google Scholar 

  • Oltvai Z, Milliman C, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conversed homolog, Bax, that accelerates programmed cell death. Cell 74:609–619

    Article  CAS  PubMed  Google Scholar 

  • Planel E, Miyasaka T, Launey T, Chui DH, Tanemura K, Sato S, Murayama O, Ishiguro K, Tatebayashi Y, Takashima A (2004) Alterations in glucose metabolism induce hypothermia leading to tau hyperphosphorylation through differential inhibition of kinase and phosphatase activities: implications for Alzheimer’s disease. J Neurosci 24:2401–2411

    Article  CAS  PubMed  Google Scholar 

  • Planel E, Richter KE, Nolan CE, Finley JE, Liu L, Wen Y, Krishnamurthy P, Herman M, Wang L, Schachter JB, Nelson RB, Lau LF, Duff KE (2007) Anesthesia leads to tau hyperphosphorylation through inhibition of phosphatase activity by hypothermia. J Neurosci 27(12):3090–3097

    Article  CAS  PubMed  Google Scholar 

  • Rhazes (865–925 AD) (1990) Al-Hawi (The continence), persian translation of the critical arabic text, vol 1. Alhavi Pharmaceutical Company, Tehran, pp 101–109

    Google Scholar 

  • Robins Wahlin TB, Byrne GJ (2011) Personality changes in Alzheimer’s disease: a systematic review. Int J Geriatr Psychiatry 26:1019–1029. doi:10.1002/gps.2655

    Article  PubMed  Google Scholar 

  • Scott AR, Bennett T, Macdonald IA (1987) Diabetes mellitus and thermoregulation. Can J Physiol Pharmacol 65:1365–1376

    Article  CAS  PubMed  Google Scholar 

  • Senechal Y, Kelly PH, Dev KK (2008) Amyloid precursor protein knockout mice show age-dependent deficits in passive avoidance learning. Behav Brain Res 186:126–132

    Article  CAS  PubMed  Google Scholar 

  • Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1:a006189. doi:10.1101/cshperspect.a006189

    Article  PubMed Central  PubMed  Google Scholar 

  • Shimohama S (2000) Apoptosis in Alzheimer’s disease—an update. Apoptosis 5:9–16

    Article  CAS  PubMed  Google Scholar 

  • Stefanovic B, Bosetti F, Silva AC (2006) Modulatory role of cyclooxygenase-2 in cerebrovascular coupling. Neuroimage 32:23e32

  • Taltavull JF, Chefera VI, Shippenberga TS, Kiyatkinb EA (2003) Severe brain hypothermia as a factor underlying behavioral immobility during cold-water forced swim. Brain Res 975:244–247

    Article  CAS  PubMed  Google Scholar 

  • Tan W, Cao X, Wang J, Lv H, Wu B, Ma H (2010) Tau hyperphosphorylation is associated with memory impairment after exposure to 1.5% isoflurane without temperature maintenance in rats. Eur J Anaesthesiol 27:835–841. doi:10.1097/EJA.0b013e32833a6561

    Article  CAS  PubMed  Google Scholar 

  • Teather LA, Packard MG, Bazan NG (2002) Post-training cyclooxygenase-2 (COX-2) inhibition impairs memory consolidation. Learn Mem 9:41–47

    Article  PubMed Central  PubMed  Google Scholar 

  • Thinakaran G, Koo EH (2008) Amyloid precursor protein trafficking, processing, and function. J Biol Chem 283:29615–29619. doi:10.1074/jbc.R800019200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tuo J, Tuaillon N, Shen D, Chan CC (2004) Endotoxin-induced uveitis in cyclooxygenase- 2-deficient mice. Invest Ophthalmol Vis Sci 45:2306e2313

  • Wang H, Zhao H, Ye Y, Xiong N, Huang J, Yao D, Shen Y, Zhao X (2010) Focal cerebral ischemia induces Alzheimer’s disease-like pathological change in rats. J Huazhong Univ Sci Technolog Med Sci 30:29–36. doi:10.1007/s11596-010-0106-4

    Article  PubMed  Google Scholar 

  • Whittington RA, Papon MA, Chouinard F, Planel E (2010) Hypothermia and Alzheimer’s disease neuropathogenic pathways. Curr Alzheimer Res 7:717–725

    Article  CAS  PubMed  Google Scholar 

  • Yamagata K, Andreasson KI, Kaufmann WE, Barnes CA, Worley PF (1993) Expression of a mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids. Neuron 11:371–386

    Article  CAS  PubMed  Google Scholar 

  • Yermakova AV, O’Banion MK (2001) Downregulation of neuronal cyclooxygenase-2 expression in end stage Alzheimer’s disease. Neurobiol Aging 22:823–836

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr Sogand Noroozizadeh and Pushpa Gandi for their contributions. This article is based on a part of a PhD thesis number 120, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolhassan Ahmadiani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadian-Attari, M.M., Dargahi, L., Mosaddegh, M. et al. Impairment of Rat Spatial Learning and Memory in a New Model of Cold Water-Induced Chronic Hypothermia: Implication for Alzheimer’s Disease. Neurotox Res 28, 95–107 (2015). https://doi.org/10.1007/s12640-015-9525-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-015-9525-0

Keywords

Navigation