Skip to main content

Advertisement

Log in

Cross-Talk Between Neurons and Astrocytes in Response to Bilirubin: Adverse Secondary Impacts

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Previous studies using monotypic nerve cell cultures have shown that bilirubin-induced neurological dysfunction (BIND) involves apoptosis and necrosis-like cell death, following neuritic atrophy and astrocyte activation, and that glycoursodeoxycholic acid (GUDCA) has therapeutic efficacy against BIND. Cross-talk between neurons and astrocytes may protect or aggravate neurotoxicity by unconjugated bilirubin (UCB). In a previous work we have shown that bidirectional signaling during astrocyte-neuron recognition attenuates neuronal damage by UCB. Here, we investigated whether the establishment of neuron-astrocyte homeostasis prior to cell exposure to UCB was instead associated with a lower resistance of neurons to UCB toxicity, and if the pro-survival properties of GUDCA were replicated in that experimental model. We have introduced a 24 h adaptation period for neuron-glia communication prior to the 48 h treatment with UCB. In such conditions, UCB induced glial activation, which aggravated neuronal damage, comprising increased apoptosis, cell demise and neuritic atrophy, which were completely prevented in the presence of GUDCA. Neuronal multidrug resistance-associated protein 1 expression and tumor necrosis factor-α secretion, although unchanged by UCB, increased in the presence of astrocytes. The rise in S100B and nitric oxide in the co-cultures medium may have contributed to UCB neurotoxicity. Since the levels of these diffusible molecules did not change by GUDCA we may assume that they are not directly involved in its beneficial effects. Data indicate that astrocytes, in an indirect neuron-astrocyte co-culture model and after homeostatic setting regulation of the system, are critically influencing neurodegeneration by UCB, and support GUDCA for the prevention of BIND.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahlfors CE, Wennberg RP, Ostrow JD, Tiribelli C (2009) Unbound (free) bilirubin: improving the paradigm for evaluating neonatal jaundice. Clin Chem 55(7):1288–1299

    Article  CAS  PubMed  Google Scholar 

  • Ait-Ikhlef A, Hantaz-Ambroise D, Henderson CE, Rieger F (2000) Influence of factors secreted by wobbler astrocytes on neuronal and motoneuronal survival. J Neurosci Res 59(1):100–106

    Article  CAS  PubMed  Google Scholar 

  • Allaman I, Gavillet M, Belanger M, Laroche T, Viertl D, Lashuel HA, Magistretti PJ (2010) Amyloid-β aggregates cause alterations of astrocytic metabolic phenotype: impact on neuronal viability. J Neurosci 30(9):3326–3338

    Article  CAS  PubMed  Google Scholar 

  • Allaman I, Belanger M, Magistretti PJ (2011) Astrocyte-neuron metabolic relationships: for better and for worse. Trends Neurosci 34(2):76–87

    Article  CAS  PubMed  Google Scholar 

  • Amiri M, Bahrami F, Janahmadi M (2012) Functional contributions of astrocytes in synchronization of a neuronal network model. J Theor Biol 292:60–70

    Article  PubMed  Google Scholar 

  • Anderl JL, Redpath S, Ball AJ (2009) A neuronal and astrocyte co-culture assay for high content analysis of neurotoxicity. J Vis Exp 27:1173–1180

    PubMed  Google Scholar 

  • Bal-Price A, Moneer Z, Brown GC (2002) Nitric oxide induces rapid, calcium-dependent release of vesicular glutamate and ATP from cultured rat astrocytes. Glia 40(3):312–323

    Article  PubMed  Google Scholar 

  • Blondeau JP, Beslin A, Chantoux F, Francon J (1993) Triiodothyronine is a high-affinity inhibitor of amino acid transport system L1 in cultured astrocytes. J Neurochem 60(4):1407–1413

    Article  CAS  PubMed  Google Scholar 

  • Bolaños JP, Almeida A (1999) Roles of nitric oxide in brain hypoxia-ischemia. Biochim Biophys Acta 1411(2–3):415–436

    Article  PubMed  Google Scholar 

  • Brites D (2012) The evolving landscape of neurotoxicity by unconjugated bilirubin: role of glial cells and inflammation. Front Pharmacol 3:88

    Article  PubMed Central  PubMed  Google Scholar 

  • Brites D, Rodrigues CMP, Oliveira N, Cardoso M, Graca LM (1998) Correction of maternal serum bile acid profile during ursodeoxycholic acid therapy in cholestasis of pregnancy. J Hepatol 28(1):91–98

    Article  CAS  PubMed  Google Scholar 

  • Brito MA, Lima S, Fernandes A, Falcão AS, Silva RFM, Butterfield DA, Brites D (2008a) Bilirubin injury to neurons: contribution of oxidative stress and rescue by glycoursodeoxycholic acid. Neurotoxicology 29(2):259–269

    Article  CAS  PubMed  Google Scholar 

  • Brito MA, Rosa AI, Falcão AS, Fernandes A, Silva RFM, Butterfield DA, Brites D (2008b) Unconjugated bilirubin differentially affects the redox status of neuronal and astroglial cells. Neurobiol Dis 29(1):30–40

    Article  CAS  PubMed  Google Scholar 

  • Brito MA, Vaz AR, Silva SL, Falcão AS, Fernandes A, Silva RFM, Brites D (2010) N-methyl-aspartate receptor and neuronal nitric oxide synthase activation mediate bilirubin-induced neurotoxicity. Mol Med 16(9–10):372–380

    Google Scholar 

  • Brown DR (1999) Neurons depend on astrocytes in a coculture system for protection from glutamate toxicity. Mol Cell Neurosci 13(5):379–389

    Article  CAS  PubMed  Google Scholar 

  • Brown GC, Bal-Price A (2003) Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol 27(3):325–355

    Article  CAS  PubMed  Google Scholar 

  • Butt AM (2011) ATP: a ubiquitous gliotransmitter integrating neuron-glial networks. Semin Cell Dev Biol 22(2):205–213

    Article  CAS  PubMed  Google Scholar 

  • Calligaris S, Cekic D, Roca-Burgos L, Gerin F, Mazzone G, Ostrow JD, Tiribelli C (2006) Multidrug resistance associated protein 1 protects against bilirubin-induced cytotoxicity. FEBS Lett 580(5):1355–1359

    Article  CAS  PubMed  Google Scholar 

  • Cekic D, Bellarosa C, Garcia-Mediavilla MV, Rigato I, Pascolo L, Ostrow JD, Tiribelli C (2003) Upregulation in the expression of multidrug resistance protein Mrp1 mRNA and protein by increased bilirubin production in rat. Biochem Biophys Res Commun 311(4):891–896

    Article  CAS  PubMed  Google Scholar 

  • Chamak B, Fellous A, Glowinski J, Prochiantz A (1987) MAP2 expression and neuritic outgrowth and branching are coregulated through region-specific neuro-astroglial interactions. J Neurosci 7(10):3163–3170

    CAS  PubMed  Google Scholar 

  • Cherrington NJ, Slitt AL, Li N, Klaassen CD (2004) Lipopolysaccharide-mediated regulation of hepatic transporter mRNA levels in rats. Drug Metab Dispos 32(7):734–741

    Article  CAS  PubMed  Google Scholar 

  • Dawson VL, Dawson TM (1996) Nitric oxide in neuronal degeneration. Proc Soc Exp Biol Med 211(1):33–40

    Article  CAS  PubMed  Google Scholar 

  • De Keyser J, Mostert JP, Koch MW (2008) Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J Neurol Sci 267(1–2):3–16

    Article  PubMed  Google Scholar 

  • Domenici MR, Paradisi S, Sacchetti B, Gaudi S, Balduzzi M, Bernardo A, Ajmone-Cat MA, Minghetti L, Malchiodi-Albedi F (2002) The presence of astrocytes enhances beta amyloid-induced neurotoxicity in hippocampal cell cultures. J Physiol Paris 96(3–4):313–316

    Article  CAS  PubMed  Google Scholar 

  • Drukarch B, Schepens E, Jongenelen CA, Stoof JC, Langeveld CH (1997) Astrocyte-mediated enhancement of neuronal survival is abolished by glutathione deficiency. Brain Res 770(1–2):123–130

    Article  CAS  PubMed  Google Scholar 

  • Drukarch B, Schepens E, Stoof JC, Langeveld CH, Van Muiswinkel FL (1998) Astrocyte-enhanced neuronal survival is mediated by scavenging of extracellular reactive oxygen species. Free Radic Biol Med 25(2):217–220

    Article  CAS  PubMed  Google Scholar 

  • Edwards MM, Robinson SR (2006) TNF alpha affects the expression of GFAP and S100B: implications for Alzheimer’s disease. J Neural Transm 113(11):1709–1715

    Article  CAS  PubMed  Google Scholar 

  • Falcão AS, Fernandes A, Brito MA, Silva RFM, Brites D (2005) Bilirubin-induced inflammatory response, glutamate release, and cell death in rat cortical astrocytes are enhanced in younger cells. Neurobiol Dis 20(2):199–206

    Article  PubMed  Google Scholar 

  • Falcão AS, Fernandes A, Brito MA, Silva RFM, Brites D (2006) Bilirubin-induced immunostimulant effects and toxicity vary with neural cell type and maturation state. Acta Neuropathol 112(1):95–105

    Article  PubMed  Google Scholar 

  • Falcão AS, Bellarosa C, Fernandes A, Brito MA, Silva RFM, Tiribelli C, Brites D (2007a) Role of multidrug resistance-associated protein 1 expression in the in vitro susceptibility of rat nerve cell to unconjugated bilirubin. Neuroscience 144(3):878–888

    Article  PubMed  Google Scholar 

  • Falcão AS, Silva RFM, Pancadas S, Fernandes A, Brito MA, Brites D (2007b) Apoptosis and impairment of neurite network by short exposure of immature rat cortical neurons to unconjugated bilirubin increase with cell differentiation and are additionally enhanced by an inflammatory stimulus. J Neurosci Res 85(6):1229–1239

    Article  PubMed  Google Scholar 

  • Falcão AS, Silva RFM, Vaz AR, Silva SL, Fernandes A, Brites D (2013) Cross-talk between neurons and astrocytes in response to bilirubin: early beneficial effects. Neurochem Res 38(3):644–659

    Article  PubMed  Google Scholar 

  • Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28(3):138–145

    Article  CAS  PubMed  Google Scholar 

  • Fernandes A, Brites D (2009) Contribution of inflammatory processes to nerve cell toxicity by bilirubin and efficacy of potential therapeutic agents. Curr Pharm Des 15(25):2915–2926

    Article  CAS  PubMed  Google Scholar 

  • Fernandes A, Silva RFM, Falcão AS, Brito MA, Brites D (2004) Cytokine production, glutamate release and cell death in rat cultured astrocytes treated with unconjugated bilirubin and LPS. J Neuroimmunol 153(1–2):64–75

    Article  CAS  PubMed  Google Scholar 

  • Fernandes A, Falcão AS, Silva RFM, Gordo AC, Gama MJ, Brito MA, Brites D (2006) Inflammatory signalling pathways involved in astroglial activation by unconjugated bilirubin. J Neurochem 96(6):1667–1679

    Article  CAS  PubMed  Google Scholar 

  • Fernandes A, Vaz AR, Falcão AS, Silva RFM, Brito MA, Brites D (2007) Glycoursodeoxycholic acid and interleukin-10 modulate the reactivity of rat cortical astrocytes to unconjugated bilirubin. J Neuropathol Exp Neurol 66(9):789–798

    Article  CAS  PubMed  Google Scholar 

  • Fernandes A, Falcão AS, Abranches E, Bekman E, Henrique D, Lanier LM, Brites D (2009) Bilirubin as a determinant for altered neurogenesis, neuritogenesis, and synaptogenesis. Dev Neurobiol 69(9):568–582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fernandes A, Barateiro A, Falcão AS, Silva SL, Vaz AR, Brito MA, Silva RFM, Brites D (2011) Astrocyte reactivity to unconjugated bilirubin requires TNF-alpha and IL-1beta receptor signaling pathways. Glia 59(1):14–25

    Article  PubMed  Google Scholar 

  • Fernandez-Fernandez S, Almeida A, Bolaños JP (2012) Antioxidant and bioenergetic coupling between neurons and astrocytes. Biochem J 443(1):3–11

    Article  CAS  PubMed  Google Scholar 

  • Fernetti C, Pascolo L, Podda E, Gennaro R, Stebel M, Tiribelli C (2001) Preparation of an antibody recognizing both human and rodent MRP1. Biochem Biophys Res Commun 288(4):1064–1068

    Article  CAS  PubMed  Google Scholar 

  • Gennuso F, Fernetti C, Tirolo C, Testa N, L’Episcopo F, Caniglia S, Morale MC, Ostrow JD, Pascolo L, Tiribelli C, Marchetti B (2004) Bilirubin protects astrocytes from its own toxicity by inducing up-regulation and translocation of multidrug resistance-associated protein 1 (Mrp1). Proc Natl Acad Sci USA 101(8):2470–2475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gonçalves CA, Leite MC, Nardin P (2008) Biological and methodological features of the measurement of S100B, a putative marker of brain injury. Clin Biochem 41(10–11):755–763

    Article  PubMed  Google Scholar 

  • Hansen TW (2002) Mechanisms of bilirubin toxicity: clinical implications. Clin Perinatol 29(4):765–778 viii

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Ferreira A, Van Eldik LJ (1997) S100beta induces neuronal cell death through nitric oxide release from astrocytes. J Neurochem 69(6):2294–2301

    Article  CAS  PubMed  Google Scholar 

  • Ihara H, Yamamoto H, Ida T, Tsutsuki H, Sakamoto T, Fujita T, Okada T, Kozaki S (2012) Inhibition of nitric oxide production and inducible nitric oxide synthase expression by a polymethoxyflavone from young fruits of Citrus unshiu in rat primary astrocytes. Biosci Biotechnol Biochem 76(10):1843–1848

    Article  CAS  PubMed  Google Scholar 

  • Jones EV, Cook D, Murai KK (2012) A neuron-astrocyte co-culture system to investigate astrocyte-secreted factors in mouse neuronal development. Methods Mol Biol 814:341–352

    Article  CAS  PubMed  Google Scholar 

  • Kaplan M, Hammerman C (2004) Understanding and preventing severe neonatal hyperbilirubinemia: is bilirubin neurotoxity really a concern in the developed world? Clin Perinatol 31(3):555–575

    Article  PubMed  Google Scholar 

  • Kaplan M, Hammerman C (2005) Understanding severe hyperbilirubinemia and preventing kernicterus: adjuncts in the interpretation of neonatal serum bilirubin. Clin Chim Acta 356(1–2):9–21

    Article  CAS  PubMed  Google Scholar 

  • Kirchhoff F, Dringen R, Giaume C (2001) Pathways of neuron-astrocyte interactions and their possible role in neuroprotection. Eur Arch Psychiatry Clin Neurosci 251(4):159–169

    Article  CAS  PubMed  Google Scholar 

  • Laird MD, Vender JR, Dhandapani KM (2008) Opposing roles for reactive astrocytes following traumatic brain injury. Neurosignals 16(2–3):154–164

    Article  CAS  PubMed  Google Scholar 

  • Lazaridis KN, Gores GJ, Lindor KD (2001) Ursodeoxycholic acid ‘mechanisms of action and clinical use in hepatobiliary disorders’. J Hepatol 35(1):134–146

    Article  CAS  PubMed  Google Scholar 

  • Lefrançois T, Fages C, Peschanski M, Tardy M (1997) Neuritic outgrowth associated with astroglial phenotypic changes induced by antisense glial fibrillary acidic protein (GFAP) mRNA in injured neuron-astrocyte cocultures. J Neurosci 17(11):4121–4128

    PubMed  Google Scholar 

  • Leite MC, Galland F, Brolese G, Guerra MC, Bortolotto JW, Freitas R, Almeida LM, Gottfried C, Goncalves CA (2008) A simple, sensitive and widely applicable ELISA for S100B: methodological features of the measurement of this glial protein. J Neurosci Methods 169(1):93–99

    Article  CAS  PubMed  Google Scholar 

  • Li XZ, Bai LM, Yang YP, Luo WF, Hu WD, Chen JP, Mao CJ, Liu CF (2009) Effects of IL-6 secreted from astrocytes on the survival of dopaminergic neurons in lipopolysaccharide-induced inflammation. Neurosci Res 65(3):252–258

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Wei X, Bales KR, Paul AB, Ma Z, Yan G, Paul SM, Du Y (2005) Minocycline blocks bilirubin neurotoxicity and prevents hyperbilirubinemia-induced cerebellar hypoplasia in the Gunn rat. Eur J Neurosci 22(1):21–27

    Article  CAS  PubMed  Google Scholar 

  • Malchiodi-Albedi F, Domenici MR, Paradisi S, Bernardo A, Ajmone-Cat MA, Minghetti L (2001) Astrocytes contribute to neuronal impairment in βA toxicity increasing apoptosis in rat hippocampal neurons. Glia 34(1):68–72

    Article  CAS  PubMed  Google Scholar 

  • McDonagh AF (1979) Bile pigments: bilatrienes and 5,15 biladienes. In: Dolphin D (ed) The porphyrins. Academic Press, New York, pp 294–491

    Google Scholar 

  • Meeks JP, Mennerick S (2003) Feeding hungry neurons: astrocytes deliver food for thought. Neuron 37(2):187–189

    Article  CAS  PubMed  Google Scholar 

  • Mikoshiba K, Kohsaka S, Takamatsu K, Tsukada Y (1980) Cerebellar hypoplasia in the Gunn rat with hereditary hyperbilirubinemia: immunohistochemical and neurochemical studies. J Neurochem 35(6):1309–1318

    Article  CAS  PubMed  Google Scholar 

  • Miller JA, Trout BR, Sullivan KA, Bialecki RA, Roberts RA, Tjalkens RB (2011) Low-dose 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine causes inflammatory activation of astrocytes in nuclear factor-kappaB reporter mice prior to loss of dopaminergic neurons. J Neurosci Res 89(3):406–417

    Article  CAS  PubMed  Google Scholar 

  • Mrak RE, Griffinbc WS (2001) The role of activated astrocytes and of the neurotrophic cytokine S100B in the pathogenesis of Alzheimer’s disease. Neurobiol Aging 22(6):915–922

    Article  CAS  PubMed  Google Scholar 

  • O’Callaghan JP, Miller DB (1985) Cerebellar hypoplasia in the Gunn rat is associated with quantitative changes in neurotypic and gliotypic proteins. J Pharmacol Exp Ther 234(2):522–533

    PubMed  Google Scholar 

  • Okumus N, Turkyilmaz C, Onal EE, Atalay Y, Serdaroglu A, Elbeg S, Koc E, Deda G, Cansu A, Gunduz B (2008) Tau and S100B proteins as biochemical markers of bilirubin-induced neurotoxicity in term neonates. Pediatr Neurol 39(4):245–252

    Article  PubMed  Google Scholar 

  • Ostrow JD, Pascolo L, Tiribelli C (2002) Mechanisms of bilirubin neurotoxicity. Hepatology 35(5):1277–1280

    Article  PubMed  Google Scholar 

  • Palmela I, Sasaki H, Cardoso FL, Moutinho M, Kim KS, Brites D, Brito MA (2012) Time-dependent dual effects of high levels of unconjugated bilirubin on the human blood-brain barrier lining. Front Cell Neurosci 6:22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Podda M, Ghezzi C, Battezzati PM, Crosignani A, Zuin M, Roda A (1990) Effects of ursodeoxycholic acid and taurine on serum liver enzymes and bile acids in chronic hepatitis. Gastroenterology 98(4):1044–1050

    Article  CAS  PubMed  Google Scholar 

  • Poupon RE, Poupon R, Balkau B (1994) Ursodiol for the long-term treatment of primary biliary cirrhosis. The UDCA-PBC Study Group. N Engl J Med 330(19):1342–1347

    Article  CAS  PubMed  Google Scholar 

  • Rigato I, Pascolo L, Fernetti C, Ostrow JD, Tiribelli C (2004) The human multidrug-resistance-associated protein MRP1 mediates ATP-dependent transport of unconjugated bilirubin. Biochem J 383(Pt 2):335–341

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ronaldson PT, Ashraf T, Bendayan R (2010) Regulation of multidrug resistance protein 1 by tumor necrosis factor α in cultured glial cells: involvement of nuclear factor-κB and c-Jun N-terminal kinase signaling pathways. Mol Pharmacol 77(4):644–659

    Article  CAS  PubMed  Google Scholar 

  • Rothermundt M, Peters M, Prehn JH, Arolt V (2003) S100B in brain damage and neurodegeneration. Microsc Res Tech 60(6):614–632

    Article  CAS  PubMed  Google Scholar 

  • Rubaltelli FF, Griffith PF (1992) Management of neonatal hyperbilirubinemia and prevention of kernicterus. Drugs 43(6):864–872

    Article  CAS  PubMed  Google Scholar 

  • Rudolph G, Kloeters-Plachky P, Sauer P, Stiehl A (2002) Intestinal absorption and biliary secretion of ursodeoxycholic acid and its taurine conjugate. Eur J Clin Invest 32(8):575–580

    Article  CAS  PubMed  Google Scholar 

  • Sidoryk-Wegrzynowicz M, Wegrzynowicz M, Lee E, Bowman AB, Aschner M (2011) Role of astrocytes in brain function and disease. Toxicol Pathol 39(1):115–123

    Article  PubMed  Google Scholar 

  • Silva R, Mata LR, Gulbenkian S, Brito MA, Tiribelli C, Brites D (1999) Inhibition of glutamate uptake by unconjugated bilirubin in cultured cortical rat astrocytes: role of concentration and pH. Biochem Biophys Res Commun 265(1):67–72

    Article  CAS  PubMed  Google Scholar 

  • Silva RFM, Rodrigues CMP, Brites D (2001) Bilirubin-induced apoptosis in cultured rat neural cells is aggravated by chenodeoxycholic acid but prevented by ursodeoxycholic acid. J Hepatol 34(3):402–408

    Article  CAS  PubMed  Google Scholar 

  • Silva RFM, Rodrigues CMP, Brites D (2002) Rat cultured neuronal and glial cells respond differently to toxicity of unconjugated bilirubin. Pediatr Res 51(4):535–541

    Article  CAS  PubMed  Google Scholar 

  • Silva SL, Osório C, Vaz AR, Barateiro A, Falcão AS, Silva RFM, Brites D (2011) Dynamics of neuron-glia interplay upon exposure to unconjugated bilirubin. J Neurochem 117(3):412–424

    Article  CAS  PubMed  Google Scholar 

  • Silva SL, Vaz AR, Diógenes MJ, van Rooijen N, Sebastião AM, Fernandes A, Silva RFM, Brites D (2012) Neuritic growth impairment and cell death by unconjugated bilirubin is mediated by NO and glutamate, modulated by microglia, and prevented by glycoursodeoxycholic acid and interleukin-10. Neuropharmacology 62(7):2398–2408

    Article  CAS  PubMed  Google Scholar 

  • Simoni P, Cerre C, Cipolla A, Polimeni C, Pistillo A, Ceschel G, Roda E, Roda A (1995) Bioavailability study of a new, sinking, enteric-coated ursodeoxycholic acid formulation. Pharmacol Res 31(2):115–119

    Article  CAS  PubMed  Google Scholar 

  • Tanaka J, Toku K, Zhang B, Ishihara K, Sakanaka M, Maeda N (1999) Astrocytes prevent neuronal death induced by reactive oxygen and nitrogen species. Glia 28(2):85–96

    Article  CAS  PubMed  Google Scholar 

  • Tian L, Ma L, Kaarela T, Li Z (2012) Neuroimmune crosstalk in the central nervous system and its significance for neurological diseases. J Neuroinflammation 9:155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vaz AR, Delgado-Esteban M, Brito MA, Bolaños JP, Brites D, Almeida A (2010) Bilirubin selectively inhibits cytochrome c oxidase activity and induces apoptosis in immature cortical neurons: assessment of the protective effects of glycoursodeoxycholic acid. J Neurochem 112(1):56–65

    Article  CAS  PubMed  Google Scholar 

  • Vaz AR, Silva SL, Barateiro A, Falcão AS, Fernandes A, Brito MA, Brites D (2011a) Selective vulnerability of rat brain regions to unconjugated bilirubin. Mol Cell Neurosci 48(1):82–93

    Article  CAS  PubMed  Google Scholar 

  • Vaz AR, Silva SL, Barateiro A, Fernandes A, Falcão AS, Brito MA, Brites D (2011b) Pro-inflammatory cytokines intensify the activation of NO/NOS, JNK1/2 and caspase cascades in immature neurons exposed to elevated levels of unconjugated bilirubin. Exp Neurol 229(2):381–390

    Article  CAS  PubMed  Google Scholar 

  • Viviani B (2006) Preparation and coculture of neurons and glial cells. Curr Protoc Cell Biol Chap. 2:Unit 2.7. doi: 10.1002/0471143030.cb0207s32

  • Wang JY, Wen LL, Huang YN, Chen YT, Ku MC (2006) Dual effects of antioxidants in neurodegeneration: direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Curr Pharm Des 12(27):3521–3533

    Article  CAS  PubMed  Google Scholar 

  • Watts LT, Rathinam ML, Schenker S, Henderson GI (2005) Astrocytes protect neurons from ethanol-induced oxidative stress and apoptotic death. J Neurosci Res 80(5):655–666

    Article  CAS  PubMed  Google Scholar 

  • Yardan T, Erenler AK, Baydin A, Aydin K, Cokluk C (2011) Usefulness of S100B protein in neurological disorders. J Pak Med Assoc 61(3):276–281

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by FEDER (COMPETE Programme) and by National funds (FCT—Fundação para a Ciência e a Tecnologia—Projects PTDC/SAU-NEU/64385/2006 to D. B. and PEst-OE/SAU/UI4013/2011 to iMed.UL). A. S. F. holds a a post doctoral research position (C2007-FFUL/UBMBE/02/2011) granted by FCT. The funding organization had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

The authors declare that there are no actual or potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dora Brites.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falcão, A.S., Silva, R.F.M., Vaz, A.R. et al. Cross-Talk Between Neurons and Astrocytes in Response to Bilirubin: Adverse Secondary Impacts. Neurotox Res 26, 1–15 (2014). https://doi.org/10.1007/s12640-013-9427-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-013-9427-y

Keywords

Navigation