Skip to main content
Log in

Mice Lacking Multidrug Resistance Protein 1a Show Altered Dopaminergic Responses to Methylenedioxymethamphetamine (MDMA) in Striatum

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Multidrug resistance protein 1a (MDR1a) potentiated methylenedioxymethamphetamine (MDMA)-induced decreases of dopamine (DA) and dopamine transport protein in mouse brain one week after MDMA administration. In the present study, we examined if mdr1a wild-type (mdr1a +/+) and knock-out (mdr1a −/−) mice differentially handle the acute effects of MDMA on the nigrostriatal DA system 0–24 h following a single drug injection. 3-way ANOVA revealed significant 2-way interactions of strain × time (F 5,152 = 32.4, P < 0.001) and strain × dose (F 3,152 = 25.8, P < 0.001) on 3,4-dihydroxyphenylacetic acid (DOPAC)/DA ratios in mdr1a +/+ and −/− mice. 0.3–3 h after 10 mg/kg MDMA, DOPAC/DA ratios were increased in mdr1a +/+ mice, but decreased 0.3–1 h after MDMA in mdr1a −/− mice. Twenty-four hours after 10 mg/kg MDMA, DOPAC/DA ratios were increased 600% in mdr1a +/+ mice compared to saline-treated control mice, while in mdr1a −/− mice DOPAC/DA ratios were unchanged. Striatal MDMA and its metabolite, methylenedioxyamphetamine, concentrations by gas chromatography–mass spectrometry were similar in both strains 0.3–4 h after MDMA, discounting the role of MDR1a-facilitated MDMA transport in observed inter-strain differences. Increased DOPAC/DA turnover in mdr1a +/+ mice following MDMA is consistent with the previous report that MDMA neurotoxicity is increased in mdr1a +/+ mice. Increased DA turnover via monoamine oxidase in mdr1a +/+ vs −/− mice might increase exposure to neurotoxic reactive oxygen species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baumann MH, Wang X, Rothman RB (2007) 3,4-Methylenedioxymethamphetamine (MDMA) neurotoxicity in rats: a reappraisal of past and present findings. Psychopharmacology (Berl) 189:407–424

    Article  CAS  Google Scholar 

  • Baumann MH, Zolkowska D, Kim I, Scheidweiler KB, Rothman RB, Huestis MA (2009) Effects of dose and route of administration on pharmacokinetics of ({±})-3,4-methylenedioxymethamphetamine (MDMA) in the rat. Drug Metab Dispos 37:2163–2170

    Article  CAS  PubMed  Google Scholar 

  • Bertelsen KM, Greenblatt DJ, von Moltke LL (2006) Apparent active transport of MDMA is not mediated by P-glycoprotein: a comparison with MDCK and Caco-2 monolayers. Biopharm Drug Dispos 27:219–227

    Article  CAS  PubMed  Google Scholar 

  • Brown JM, Gouty S, Iyer V, Rosenberger J, Cox BM (2006) Differential protection against MPTP or methamphetamine toxicity in dopamine neurons by deletion of ppN/OFQ expression. J Neurochem 98:495–505

    Article  CAS  PubMed  Google Scholar 

  • Burke WJ, Li SW, Chung HD, Ruggiero DA, Kristal BS, Johnson EM, Lampe P, Kumar VB, Franko M, Williams EA, Zahm DS (2004) Neurotoxicity of MAO metabolites of catecholamine neurotransmitters: role in neurodegenerative diseases. Neurotoxicology 25:101–115

    Article  CAS  PubMed  Google Scholar 

  • Cadet JL, Krasnova IN, Jayanthi S, Lyles J (2007) Neurotoxicity of substituted amphetamines: molecular and cellular mechanisms. Neurotox Res 11:183–202

    Article  CAS  PubMed  Google Scholar 

  • Capela JP, Carmo H, Remiao F, Bastos ML, Meisel A, Carvalho F (2009) Molecular and cellular mechanisms of ecstasy-induced neurotoxicity: an overview. Mol Neurobiol 39:210–271

    Article  CAS  PubMed  Google Scholar 

  • Chu T, Kumagai Y, DiStefano EW, Cho AK (1996) Disposition of methylenedioxymethamphetamine and three metabolites in the brains of different rat strains and their possible roles in acute serotonin depletion. Biochem Pharmacol 51:789–796

    Article  CAS  PubMed  Google Scholar 

  • Colado MI, O’Shea E, Green AR (2004) Acute and long-term effects of MDMA on cerebral dopamine biochemistry and function. Psychopharmacology (Berl) 173:249–263

    Article  CAS  Google Scholar 

  • Crowe A, Diep S (2008) pH dependent efflux of methamphetamine derivatives and their reversal through human Caco-2 cell monolayers. Eur J Pharmacol 592:7–12

    Article  CAS  PubMed  Google Scholar 

  • de la Torre R, Farre M, Ortuno J, Mas M, Brenneisen R, Roset PN, Segura J, Cami J (2000) Non-linear pharmacokinetics of MDMA (‘ecstasy’) in humans. Br J Clin Pharmacol 49:104–109

    Article  PubMed  Google Scholar 

  • de la Torre R, Farre M, Navarro M, Pacifici R, Zuccaro P, Pichini S (2004) Clinical pharmacokinetics of amfetamine and related substances: monitoring in conventional and non-conventional matrices. Clin Pharmacokinet 43:157–185

    Article  PubMed  Google Scholar 

  • Deng X, Ladenheim B, Jayanthi S, Cadet JL (2007) Methamphetamine administration causes death of dopaminergic neurons in the mouse olfactory bulb. Biol Psychiatry 61:1235–1243

    Article  CAS  PubMed  Google Scholar 

  • Eisenhofer G, Kopin IJ, Goldstein DS (2004) Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev 56:331–349

    Article  CAS  PubMed  Google Scholar 

  • Fleckenstein AE, Hanson GR (2003) Impact of psychostimulants on vesicular monoamine transporter function. Eur J Pharmacol 479:283–289

    Article  CAS  PubMed  Google Scholar 

  • Fleckenstein AE, Volz TJ, Riddle EL, Gibb JW, Hanson GR (2007) New insights into the mechanism of action of amphetamines. Annu Rev Pharmacol Toxicol 47:681–698

    Article  CAS  PubMed  Google Scholar 

  • Fornai F, Giorgi FS, Gesi M, Chen K, Alessri MG, Shih JC (2001) Biochemical effects of the monoamine neurotoxins DSP-4 and MDMA in specific brain regions of MAO-B-deficient mice. Synapse 39:213–221

    Article  CAS  PubMed  Google Scholar 

  • Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379:606–612

    Article  CAS  PubMed  Google Scholar 

  • Gouzoulis-Mayfrank E, Daumann J (2006) Neurotoxicity of methylenedioxyamphetamines (MDMA; ecstasy) in humans: how strong is the evidence for persistent brain damage? Addiction 101:348–361

    Article  CAS  PubMed  Google Scholar 

  • Green AR, Mechan AO, Elliott JM, O’Shea E, Colado MI (2003) The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Rev 55:463–508

    Article  CAS  PubMed  Google Scholar 

  • Gudelsky GA, Yamamoto BK (2008) Actions of 3,4-methylenedioxymethamphetamine (MDMA) on cerebral dopaminergic, serotonergic and cholinergic neurons. Pharmacol Biochem Behav 90:198–207

    Article  CAS  PubMed  Google Scholar 

  • Hall AP, Henry JA (2006) Acute toxic effects of ‘Ecstasy’ (MDMA) and related compounds: overview of pathophysiology and clinical management. Br J Anaesth 96:678–685

    Article  CAS  PubMed  Google Scholar 

  • Hansen JP, Riddle EL, Sandoval V, Brown JM, Gibb JW, Hanson GR, Fleckenstein AE (2002) Methylenedioxymethamphetamine decreases plasmalemmal and vesicular dopamine transport: mechanisms and implications for neurotoxicity. J Pharmacol Exp Ther 300:1093–1100

    Article  CAS  PubMed  Google Scholar 

  • Heydari A, Yeo KR, Lennard MS, Ellis SW, Tucker GT, Rostami-Hodjegan A (2004) Mechanism-based inactivation of CYP2D6 by methylenedioxymethamphetamine. Drug Metab Dispos 32:1213–1217

    Article  CAS  PubMed  Google Scholar 

  • Ho RH, Kim RB (2005) Transporters and drug therapy: implications for drug disposition and disease. Clin Pharmacol Ther 78:260–277

    Article  CAS  PubMed  Google Scholar 

  • Hrometz SL, Brown AW, Nichols DE, Sprague JE (2004) 3, 4-methylenedioxymethamphetamine (MDMA, ecstasy)-mediated production of hydrogen peroxide in an in vitro model: the role of dopamine, the serotonin-reuptake transporter, and monoamine oxidase-B. Neurosci Lett 367:56–59

    Article  CAS  PubMed  Google Scholar 

  • Huang NK, Wan FJ, Tseng CJ, Tung CS (1997) Amphetamine induces hydroxyl radical formation in the striatum of rats. Life Sci 61:2219–2229

    Article  CAS  PubMed  Google Scholar 

  • Javitt DC, Hashim A, Sershen H (2005) Modulation of striatal dopamine release by glycine transport inhibitors. Neuropsychopharmacology 30:649–656

    Article  CAS  PubMed  Google Scholar 

  • Kahlig KM, Binda F, Khoshbouei H, Blakely RD, McMahon DG, Javitch JA, Galli A (2005) Amphetamine induces dopamine efflux through a dopamine transporter channel. Proc Natl Acad Sci USA 102:3495–3500

    Article  CAS  PubMed  Google Scholar 

  • Karlsen SN, Spigset O, Slordal L (2008) The dark side of ecstasy: neuropsychiatric symptoms after exposure to 3,4-methylenedioxymethamphetamine. Basic Clin Pharmacol Toxicol 102:15–24

    CAS  PubMed  Google Scholar 

  • Ketabi-Kiyanvash N, Weiss J, Haefeli WE, Mikus G (2003) P-glycoprotein modulation by the designer drugs methylenedioxymethamphetamine, methylenedioxyethylamphetamine and paramethoxyamphetamine. Addict Biol 8:413–418

    Article  CAS  PubMed  Google Scholar 

  • Kolbrich EA, Goodwin RS, Gorelick DA, Hayes RJ, Stein EA, Huestis MA (2008) Plasma pharmacokinetics of 3,4-methylenedioxymethamphetamine after controlled oral administration to young adults. Ther Drug Monit 30:320–332

    Article  CAS  PubMed  Google Scholar 

  • Krasnova IN, Ladenheim B, Jayanthi S, Oyler J, Moran TH, Huestis MA, Cadet JL (2001) Amphetamine-induced toxicity in dopamine terminals in CD-1 and C57BL/6 J mice: complex roles for oxygen-based species and temperature regulation. Neuroscience 107:265–274

    Article  CAS  PubMed  Google Scholar 

  • Leonardi ET, Azmitia EC (1994) MDMA (ecstasy) inhibition of MAO type A and type B: comparisons with fenfluramine and fluoxetine (Prozac). Neuropsychopharmacology 10:231–238

    CAS  PubMed  Google Scholar 

  • Linnet K, Ejsing TB (2008) A review on the impact of P-glycoprotein on the penetration of drugs into the brain. Focus on psychotropic drugs. Eur Neuropsychopharmacol 18:157–169

    Article  CAS  PubMed  Google Scholar 

  • Mann H, Ladenheim B, Hirata H, Moran TH, Cadet JL (1997) Differential toxic effects of methamphetamine (METH) and methylenedioxymethamphetamine (MDMA) in multidrug-resistant (mdr1a) knockout mice. Brain Res 769:340–346

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Weickert CS, Akil M, Lipska BK, Hyde TM, Herman MM, Kleinman JE, Weinberger DR (2003) Catechol O-methyltransferase mRNA expression in human and rat brain: evidence for a role in cortical neuronal function. Neuroscience 116:127–137

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki I, Asanuma M, Diaz-Corrales FJ, Fukuda M, Kitaichi K, Miyoshi K, Ogawa N (2006) Methamphetamine-induced dopaminergic neurotoxicity is regulated by quinone-formation-related molecules. Faseb J 20:571–573

    CAS  PubMed  Google Scholar 

  • Morton J (2005) Ecstasy: pharmacology and neurotoxicity. Curr Opin Pharmacol 5:79–86

    Article  CAS  PubMed  Google Scholar 

  • Mueller M, Peters F, Maurer H, McCann U, Ricaurte GA (2008) Non-linear pharmacokinetics of MDMA (“Ecstasy”) and its major metabolites in squirrel monkeys at plasma concentrations of MDMA that develop after typical psychoactive doses. J Pharmacol Exp Ther 327:38–44

    Article  CAS  PubMed  Google Scholar 

  • O’Shea E, Easton N, Fry JR, Green AR, Marsden CA (2002) Protection against 3,4-methylenedioxymethamphetamine-induced neurodegeneration produced by glutathione depletion in rats is mediated by attenuation of hyperthermia. J Neurochem 81:686–695

    Article  PubMed  Google Scholar 

  • Partilla JS, Dempsey AG, Nagpal AS, Blough BE, Baumann MH, Rothman RB (2006) Interaction of amphetamines and related compounds at the vesicular monoamine transporter. J Pharmacol Exp Ther 319:237–246

    Article  CAS  PubMed  Google Scholar 

  • Quinton MS, Yamamoto BK (2006) Causes and consequences of methamphetamine and MDMA toxicity. Aaps J 8:E337–E347

    PubMed  Google Scholar 

  • Riddle EL, Fleckenstein AE, Hanson GR (2005) Role of monoamine transporters in mediating psychostimulant effects. Aaps J 7:E847–E851

    Article  CAS  PubMed  Google Scholar 

  • Riddle EL, Fleckenstein AE, Hanson GR (2006) Mechanisms of methamphetamine-induced dopaminergic neurotoxicity. Aaps J 8:E413–E418

    PubMed  Google Scholar 

  • Sanchez-Carbayo M, Belbin TJ, Scotlandi K, Prystowsky M, Baldini N, Childs G, Cordon-Cardo C (2003) Expression profiling of osteosarcoma cells transfected with MDR1 and NEO genes: regulation of cell adhesion, apoptosis, and tumor suppression-related genes. Lab Invest J Tech Methods Pathol 83:507–517

    CAS  Google Scholar 

  • Scheidweiler KB, Barnes AJ, Huestis MA (2008) A validated gas chromatographic-electron impact ionization mass spectrometric method for methamphetamine, methylenedioxymethamphetamine (MDMA), and metabolites in mouse plasma and brain. J Chromatogr B Analyt Technol Biomed Life Sci 876:266–276

    Article  CAS  PubMed  Google Scholar 

  • Sharom FJ (2008) ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics 9:105–127

    Article  CAS  PubMed  Google Scholar 

  • Steele TD, Nichols DE, Yim GK (1989) MDMA transiently alters biogenic amines and metabolites in mouse brain and heart. Pharmacol Biochem Behav 34:223–227

    Article  CAS  PubMed  Google Scholar 

  • Stokes AH, Hastings TG, Vrana KE (1999) Cytotoxic and genotoxic potential of dopamine. J Neurosci Res 55:659–665

    Article  CAS  PubMed  Google Scholar 

  • Thomasius R, Zapletalova P, Petersen K, Buchert R, Andresen B, Wartberg L, Nebeling B, Schmoldt A (2006) Mood, cognition and serotonin transporter availability in current and former ecstasy (MDMA) users: the longitudinal perspective. J Psychopharmacol 20:211–225

    Article  CAS  PubMed  Google Scholar 

  • Upreti VV, Eddington ND (2008) Fluoxetine pretreatment effects pharmacokinetics of 3,4-methylenedioxymethamphetamine (MDMA, ECSTASY) in rat. J Pharm Sci 97:1593–1605

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Pearl SM, Zigmond MJ, Michael AC (2000) Inhibitory glutamatergic regulation of evoked dopamine release in striatum. Neuroscience 96:65–72

    Article  CAS  PubMed  Google Scholar 

  • Zhou SF (2008) Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica 38:802–832

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank David Epstein and Jennifer Bossert from the National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD for assistance with statistical analysis. This research was supported by the Intramural Research Program of the National Institute on Drug Abuse, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilyn A. Huestis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheidweiler, K.B., Ladenheim, B., Cadet, J.L. et al. Mice Lacking Multidrug Resistance Protein 1a Show Altered Dopaminergic Responses to Methylenedioxymethamphetamine (MDMA) in Striatum. Neurotox Res 18, 200–209 (2010). https://doi.org/10.1007/s12640-009-9124-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-009-9124-z

Keywords

Navigation