Skip to main content
Log in

1-Methyl-1,2,3,4-tetrahydroisoquinoline Antagonizes a Rise in Brain Dopamine Metabolism, Glutamate Release in Frontal Cortex and Locomotor Hyperactivity Produced by MK-801 but not the Disruptions of Prepulse Inhibition, and Impairment of Working Memory in Rat

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

1-Methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ) is an endogenous compound that is constantly present in the brain, and that exhibits neuroprotective activity. Our earlier study has suggested that 1MeTIQ may play a crucial physiological role in the mammalian brain as an endogenous regulator of dopaminergic activity. It is well known that central nervous system stimulants such as: amphetamine, cocaine, phencyclidine, and selective NMDA receptor antagonists, e.g., MK-801 produce neuropsychotoxicity (psychosis, addiction) that is indistinguishable from paranoid type schizophrenia. In rodents, phencyclidine and MK-801 are often used to evoke schizophrenia-like behavioral abnormalities which are inhibited by neuroleptics. The present study was designed to further investigate potential antipsychotic properties of 1MeTIQ by using both behavioral and neurochemical studies in the rat. We investigated the influence of 1MeTIQ (25 and 50 mg/kg ip) on locomotor hyperactivity, disruptions of prepulse inhibition (PPI), and working memory impairment induced by the NMDA receptor antagonist, MK-801 (0.2–0.3 mg/kg ip). In addition in the biochemical study, we analyzed the effect of 1MeTIQ on the changes in dopamine metabolism in different brain structures and in extraneuronal release of dopamine and glutamate in the rat frontal cortex, produced by MK-801. The concentration of dopamine (DA) and its metabolites: 3,4-dihydroxyphenylacetic acid (DOPAC), 3-methoxytyramine (3-MT), and homovanillic acid (HVA), as well as the extraneuronal concentration of dopamine and glutamate were established by HPLC. MK-801 (0.25 mg/kg ip) evoked significant disruptions of PPI and working memory impairment, and co-administration of 1MeTIQ at two investigated doses of 25 and 50 mg/kg ip did not antagonize these effects. On the other hand hyperactivity evoked by MK-801 as well as a rise in dopamine metabolism in specific brain structures and glutamate release in the frontal cortex was completely antagonized by pretreatment with 1MeTIQ. If the hyperlocomotion elicited by acutely administered MK-801 is a valid model of at least some aspects of schizophrenia, these results indicate that 1MeTIQ will show efficacy in treating this condition. In conclusions, the present study suggests that 1MeTIQ, an endogenous neuroprotective compound, exhibits also antipsychotic-like efficacy in some animal tests, and may be useful in clinical practice as a psychosis-attenuating drug in schizophrenic patients. However, 1MeTIQ did not attenuate sensorimotor gating deficit or working memory impairment evoked by MK-801 which may be served as a model of negative symptoms of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe K, Saitoh T, Horiguchi Y, Utsunomiya I, Taguchi K (2005) Synthesis and neurotoxicity of tetrahydroisoquinoline derivatives for studying Parkinson’s disease. Biol Pharm Bull 28:1355–1362

    Article  PubMed  CAS  Google Scholar 

  • Abekawa T, Ito K, Koyama T (2006) Role of the simultaneous enhancement of NMDA and dopamine D1 receptor-mediated neurotransmission in the effects of clozapine on phencyclidine-induced acute increases in glutamate levels in the rat medial prefrontal cortex. Naunyn Schmiedebergs Arch Pharmacol 374:177–193

    Article  PubMed  CAS  Google Scholar 

  • Abekawa T, Ito K, Koyama T (2007) Different effects of a single and repeated administration of clozapine on phencyclidine-induced hyperlocomotion and glutamate releases in the rat medial prefrontal cortex at short- and long-term withdrawal from this antipsychotic. Naunyn Schmiedebergs Arch Pharmacol 375:261–271

    Article  PubMed  CAS  Google Scholar 

  • Adams B, Moghaddam B (1998) Corticolimbic dopamine neurotransmission is temporally dissociated from the cognitive and locomotor effects of phencyclidine. J Neurosci 18:5545–5554

    PubMed  CAS  Google Scholar 

  • Antkiewicz-Michaluk L, Vetulani J (2001) Tetrahydroisoquinolines as endogenous neurotoxins and neuroprotectants. Acta Neurobiol Exp 61:246

    Google Scholar 

  • Antkiewicz-Michaluk L, Michaluk J, Romańska I, Papla I, Vetulani J (2000) Antidopaminergic effects of 1,2,3,4-tetrahydroisoquinoline and salsolinol. J Neural Transm 107:1009–1019

    Article  PubMed  CAS  Google Scholar 

  • Antkiewicz-Michaluk L, Michaluk J, Mokrosz M, Romańska I, Lorenc-Koci E, Ohta S, Vetulani J (2001) Different action on dopamine catabolic pathways of two endogenous 1,2,3,4-tetrahydroisoquinolines with similar antidopaminergic properties. J Neurochem 78:100–108

    Article  PubMed  CAS  Google Scholar 

  • Antkiewicz-Michaluk L, Karolewicz B, Romańska I, Michaluk J, Bojarski AJ, Vetulani J (2003) 1-Methyl-1,2,3,4-tetrahydroisoquinoline protects against rotenone-induced mortality and biochemical changes in rat brain. Eur J Pharmacol 466:263–269

    Article  PubMed  CAS  Google Scholar 

  • Antkiewicz-Michaluk L, Wardas J, Michaluk J, Romańska I, Bojarski A, Vetulani J (2004) Protective effect of 1-methyl-1,2,3,4-tetrahydroisoquinoline against dopaminergic neurodegeneration in the extrapyramidal structures produced by intracerebral injection of rotenone. Int J Neuropsychopharmacol 7:155–163

    Article  PubMed  CAS  Google Scholar 

  • Antkiewicz-Michaluk L, Filip M, Kostowski W, Patsenka A, Popik P, Przegaliński E, Wróbel M (2005) 1-Methyl-1,2,3,4-tetrahydroisoquinoline attenuates ethanol, cocaine and morphine addiction in behavioral models: neurochemical correlates. Acta Neurobiol Exp 65:301–321

    Google Scholar 

  • Antkiewicz-Michaluk L, Łazarewicz JW, Patsenka A, Kajta M, Ziemińska E, Salińska E, Wąsik A, Gołembiowska K, Vetulani J (2006) The mechanism of 1,2,3,4-tetrahydroisoquinolines neuroprotection: the importance of free radicals scavenging properties and inhibition of glutamate-induced excitotoxicity. J Neurochem 97:846–856

    Article  PubMed  CAS  Google Scholar 

  • Antkiewicz-Michaluk L, Filip M, Michaluk J, Romańska I, Przegaliński E, Vetulani J (2007) An endogenous neuroprotectant substance, 1-methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ), prevents the behavioral and neurochemical effects of cocaine reinstatement in drug-dependent rats. J Neural Transm 114:307–317

    Article  PubMed  CAS  Google Scholar 

  • Arnt J, Skarsfeldt T (1998) Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence. Neuropsychopharmacology 18:63–101

    Article  PubMed  CAS  Google Scholar 

  • Bakshi VP, Geyer MA (1998) Multiple limbic regions mediate the disruption of prepulse inhibition produced in rats by the noncompetitive NMDA antagonist dizocilpine. J Neurosci 18:8394–8401

    PubMed  CAS  Google Scholar 

  • Bakshi VP, Geyer MA (1999) Alpha-1-adrenergic receptors mediate sensorimotor gating deficits produced by intracerebral dizocilpine administration in rats. Neuroscience 92:113–121

    Article  PubMed  CAS  Google Scholar 

  • Bakshi VP, Swerdlow NR, Geyer MA (1994) Clozapine antagonizes phencyclidine-induced deficits in sensorimotor gating of the startle response. J Pharmacol Exp Ther 271:787–794

    PubMed  CAS  Google Scholar 

  • Bast T, Zhang W, Feldon J, White IM (2000) Effects of MK801 and neuroleptics on prepulse inhibition: re-examination in two strains of rats. Pharmacol Biochem Behav 67:647–658

    Article  PubMed  CAS  Google Scholar 

  • Braff DL, Geyer MA, Light GA, Sprock J, Perry W, Cadenhead KS, Swerdlow NR (2001a) Impact of prepulse characteristics on the detection of sensorimotor gating deficits in schizophrenia. Schizophr Res 49:171–178

    Article  PubMed  CAS  Google Scholar 

  • Braff DL, Geyer MA, Swerdlow NR (2001b) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl) 156:234–258

    Article  CAS  Google Scholar 

  • Bubenikova V, Votava M, Horácek J, Pálenicek T, Dockery C (2005) The effect of zotepine, risperidone, clozapine and olanzapine on MK-801-disrupted sensorimotor gating. Pharmacol Biochem Behav 80:591–596

    Article  PubMed  CAS  Google Scholar 

  • Bubser M, Koch M (1994) Prepulse inhibition of the acoustic startle response of rats is reduced by 6-hydroxydopamine lesions of the medial prefrontal cortex. Psychopharmacology (Berl) 113:487–492

    Article  CAS  Google Scholar 

  • Clineschmidt BV, Martin GE, Bunting PR, Papp NL (1982) Central sympathomimetic activity of (+)-5-methyl-10,11-dihydro-5H-dibenzo [a, d] cyclohepten-5,10-imine (MK-801), a substance with potent anticonvulsant, central sympathomimetic and apparent anxiolytic properties. Drug Dev Res 2:135

    Article  CAS  Google Scholar 

  • De Jong IE, van den Buuse M (2006) SCH 23390 in the prefrontal cortex enhances the effect of apomorphine on prepulse inhibition of rats. Neuropharmacology 51:438–446

    Article  PubMed  CAS  Google Scholar 

  • Duncan EJ, Szilagyi S, Efferen TR, Schwartz MP, Parwani A, Chakravorty S, Madonick SH, Kunzova A, Harmon JW, Angrist B, Gonzenbach S, Rotrosen JP (2003) Effect of treatment status on prepulse inhibition of acoustic startle in schizophrenia. Psychopharmacology (Berl) 167:63–71

    CAS  Google Scholar 

  • Ellenbroek BA, Budde S, Cools AR (1996) Prepulse inhibition and latent inhibition: the role of dopamine in the medial prefrontal cortex. Neuroscience 75:535–542

    Article  PubMed  CAS  Google Scholar 

  • Enomoto T, Ishibashi T, Tokuda K, Ishiyama T, Toma S, Ito A (2008) Lurasidone reverses MK-801-induced impairment of learning and memory in the Morris water maze and radialarm maze tests in rats. Behav Brain Res 186:197–207

    Article  PubMed  CAS  Google Scholar 

  • Fendt M, Schwienbacher I, Koch M (2000) Amygdaloid N-methyl-D-aspartate and gamma-aminobutyric acid(A) receptors regulate sensorimotor gating in a dopamine-dependent way in rats. Neuroscience 98:55–60

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Ladona FJ, Cox BF (2003) BP897, a selective dopamine D3 receptor ligand with therapeutic potential for the treatment of cocaine-addiction. CNS Drug Rev 9:141–158

    PubMed  CAS  Google Scholar 

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology (Berl) 156:117–154

    Article  CAS  Google Scholar 

  • Goldman-Rakic PS, Muly EC, Williams GV (2000) D(1) receptors in prefrontal cells and circuits. Brain Res Rev 31:295–301

    Article  PubMed  CAS  Google Scholar 

  • Gołembiowska K, Dziubina A (2004) Striatal adenosine A2A receptor blockade increases extracellular dopamine release following L-DOPA administration in intact and dopamine-denervated rats. Neuropharmacology 47:414–426

    Article  PubMed  CAS  Google Scholar 

  • Green MF (2007) Stimulating the development of drug treatments to improve cognition in schizophrenia. Annu Rev Clin Psychol 3:159–180

    Article  PubMed  Google Scholar 

  • Hoffman DC (1992) Typical and atypical neuroleptics antagonize MK-801-induced locomotion and stereotypy in rats. J Neural Transm Gen Sect 89:1–10

    Article  PubMed  CAS  Google Scholar 

  • Hoffman DC, Donovan H, Cassella JV (1993) The effects of haloperidol and clozapine on the disruption of sensorimotor gating induced by the noncompetitive glutamate antagonist MK-801. Psychopharmacology (Berl) 111:339–344

    Article  CAS  Google Scholar 

  • Homayoun H, Stefani MR, Adams BW, Tamagan GD, Moghaddam B (2004) Functional interaction between NMDA and mGlu5 receptors: effects on working memory, instrumental learning, motor behaviors, and dopamine release. Neuropsychopharmacology 29:1259–1269

    Article  PubMed  CAS  Google Scholar 

  • Hondo H, Yonezawa Y, Nakahara K, Hirano M, Uchimura H, Tashiro N (1994) Effect of phencyclidine on dopamine release in the rat prefrontal cortex; an in vivo microdialysis study. Brain Res 633:337–342

    Article  PubMed  CAS  Google Scholar 

  • Imre G, Fokkema DS, Ter Horst GJ (2006a) Subchronic administration of LY354740 does not modify ketamine-evoked behavior and neuronal activity in rats. Eur J Pharmacol 544:77–81

    Article  PubMed  CAS  Google Scholar 

  • Imre G, Salomons A, Jongsma M, Fokkema DS, Den Boer JA, Ter Horst GJ (2006b) Effects of the mGluR2/3 agonist LY379268 on ketamine-evoked behaviours and neurochemical changes in the dentate gyrus of the rat. Pharmacol Biochem Behav 84:392–399

    Article  PubMed  CAS  Google Scholar 

  • Jackson DM, Johansson C, Lindgren LM, Bengtsson A (1994a) Dopamine receptor antagonists block amphetamine and phencyclidine-induced motor stimulation in rats. Pharmacol Biochem Behav 48:465–471

    Article  PubMed  CAS  Google Scholar 

  • Jackson DM, Ryan C, Evenden J, Mohell N (1994b) Preclinical findings with new antipsychotic agents: what makes them atypical? Acta Psychiatr Scand Suppl 380:41–48

    Article  PubMed  CAS  Google Scholar 

  • Jackson ME, Homayoun H, Moghaddam B (2004) NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex. Proc Natl Acad Sci USA 101:8467–8472

    Article  PubMed  CAS  Google Scholar 

  • Jentsch JD, Wise A, Katz Z, Roth RH (1998) Alpha-noradrenergic receptor modulation of the phencyclidine- and delta9-tetrahydrocannabinol-induced increases in dopamine utilization in rat prefrontal cortex. Synapse 28:21–26

    Article  PubMed  CAS  Google Scholar 

  • Keefe RS, Bilder RM, Davis SM, Harvey PD, Palmer BW, Gold JM, Meltzer HY, Green MF, Capuano G, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Davis CE, Hsiao JK, Lieberman JA, CATIE Investigators, Neurocognitive Working Group (2007) Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE trial. Arch Gen Psychiatry 64:633–647

    Article  PubMed  CAS  Google Scholar 

  • Keith VA, Mansbach RS, Geyer MA (1991) Failure of haloperidol to block the effects of phencyclidine and dizocilpine on prepulse inhibition of startle. Biol Psychiatry 30:557–566

    Article  PubMed  CAS  Google Scholar 

  • Koch M, Bubser M (1994) Deficient sensorimotor gating after 6-hydroxydopamine lesion of the rat medial prefrontal cortex is reversed by haloperidol. Eur J Neurosci 6:1837–1845

    Article  PubMed  CAS  Google Scholar 

  • Kristiansen LV, Huerta I, Beneyto M, Meador-Woodruff JH (2007) NMDA receptors and schizophrenia. Curr Opin Pharmacol 7:48–55

    Article  PubMed  CAS  Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr, Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51:199–214

    PubMed  CAS  Google Scholar 

  • Krystal JH, D’Souza DC, Mathalon D, Perry E, Belger A, Hoffman R (2003) NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology (Berl) 169:215–233

    Article  CAS  Google Scholar 

  • Krystal JH, Abi-Saab W, Perry E, D’Souza DC, Liu N, Gueorguieva R, McDougall L, Hunsberger T, Belger A, Levine L, Breier A (2005) Preliminary evidence of attenuation of the disruptive effects of the NMDA glutamate receptor antagonist, ketamine, on working memory by pretreatment with the group II metabotropic glutamate receptor agonist, LY354740, in healthy human subjects. Psychopharmacology (Berl) 179:303–309

    Article  CAS  Google Scholar 

  • Kumari V, Soni W, Sharma T (1999) Normalization of information processing deficits in schizophrenia with clozapine. Am J Psychiatry 156:1046–1051

    PubMed  CAS  Google Scholar 

  • Lacroix L, Broersen LM, Feldon J, Weiner I (2000) Effects of local infusions of dopaminergic drugs into the medial prefrontal cortex of rats on latent inhibition, prepulse inhibition and amphetamine induced activity. Behav Brain Res 107:111–121

    Article  PubMed  CAS  Google Scholar 

  • Le Foll B, Schwartz JC, Sokoloff P (2000) Dopamine D3 receptor agents as potential new medications for drug addiction. Eur Psychiatry 15:140–146

    Article  PubMed  CAS  Google Scholar 

  • Le Foll B, Goldberg SR, Sokoloff P (2005) The dopamine D3 receptor and drug dependence: effects on reward or beyond? Neuropharmacology 49:525–541

    Article  PubMed  CAS  Google Scholar 

  • López-Gil X, Babot Z, Amargós-Bosch M, Suñol C, Artigas F, Adell A (2007) Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology 17:141–150

    Article  Google Scholar 

  • Luby ED, Cohen BD, Rosenbaum G, Gottlieb JS, Kelley R (1959) Study of a new schizophrenomimetic drug; sernyl. AMA Arch Neurol Psychiatry 81:363–369

    PubMed  CAS  Google Scholar 

  • Ma J, Leung LS (2007) The supramammillo-septal-hippocampal pathway mediates sensorimotor gating impairment and hyperlocomotion induced by MK-801 and ketamine in rats. Psychopharmacology (Berl) 191:961–974

    Article  CAS  Google Scholar 

  • Ma J, Shen B, Rajakumar N, Leung LS (2004) The medial septum mediates impairment of prepulse inhibition of acoustic startle induced by a hippocampal seizure or phencyclidine. Behav Brain Res 155:153–166

    Article  PubMed  Google Scholar 

  • Mach UR, Hackling AE, Perachon S, Ferry S, Wermuth CG, Schwartz JC, Sokoloff P, Stark H (2004) Development of novel 1,2,3,4-tetrahydroisoquinoline derivatives and closely related compounds as potent and selective dopamine D3 receptor ligands. Chembiochem 5:508–518

    Article  PubMed  CAS  Google Scholar 

  • Maj J, Rogóż Z, Skuza G (1991) Locomotor hyperactivity induced by MK-801 in rats. Pol J Pharmacol Pharm 43:449–458

    PubMed  CAS  Google Scholar 

  • Malhotra AK, Pinals DA, Adler CM, Elman I, Clifton A, Pickar D, Breier A (1997) Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology 17:141–150

    Article  PubMed  CAS  Google Scholar 

  • Mansbach RS, Geyer MA, Braff DL (1988) Dopaminergic stimulation disrupts sensorimotor gating in the rat. Psychopharmacology (Berl) 94:507–514

    Article  CAS  Google Scholar 

  • Marcus MM, Jardemark KE, Wadenberg ML, Langlois X, Hertel P, Svensson TH (2005) Combined alpha2 and D2/3 receptor blockade enhances cortical glutamatergic transmission and reverses cognitive impairment in the rat. Int J Neuropsychopharmacol 8:315–327

    Article  PubMed  CAS  Google Scholar 

  • Marrs W, Kuperman J, Avedian T, Roth RH, Jentsch JD (2005) Alpha-2 adrenoceptor activation inhibits phencyclidine-induced deficits of spatial working memory in rats. Neuropsychopharmacology 30:1500–1510

    Article  PubMed  CAS  Google Scholar 

  • McNaught KS, Carrupt PA, Altomare C, Cellamare S, Carotti A, Testa B, Jenner P, Meltzer HY (1994) An overview of the mechanism of action of clozapine. J Clin Psychiatr 55:47–52

    Google Scholar 

  • Miller JW, Selhub J, Joseph JA (1996) Oxidative damage caused by free radicals produced during catecholamine autoxidation: protective effects of O-methylation and melatonin. Free Radic Biol Med 21:241–249

    Article  PubMed  CAS  Google Scholar 

  • Moghaddam B, Adams BW (1998) Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 281:1349–1352

    Article  PubMed  CAS  Google Scholar 

  • Mouri A, Noda Y, Enomoto T, Nabeshima T (2007) Phencyclidine animal models of schizophrenia: approaches from abnormality of glutamatergic neurotransmission and neurodevelopment. Neurochem Int 51:173–184

    Article  PubMed  CAS  Google Scholar 

  • Murphy BL, Arnsten AF, Jentsch JD, Roth RH (1996a) Dopamine and spatial working memory in rats and monkeys: pharmacological reversal of stress-induced impairment. J Neurosci 16:7768–7775

    PubMed  CAS  Google Scholar 

  • Murphy BL, Arnsten AF, Goldman-Rakic PS, Roth RH (1996b) Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys. Proc Natl Acad Sci USA 93:1325–1329

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu T (1997) Isoquinoline neurotoxins in the brain and Parkinson’s disease. Neurosci Res 29:99–111

    Article  PubMed  CAS  Google Scholar 

  • Narayanan S, Willins D, Dalia A, Wallace L, Uretsky N (1996) Role of dopaminergic mechanisms in the stimulatory effects of MK-801 injected into the ventral tegmental area and the nucleus accumbens. Pharmacol Biochem Behav 54:565–573

    Article  PubMed  CAS  Google Scholar 

  • Ogren SO, Goldstein M (1994) Phencyclidine- and dizocilpine-induced hyperlocomotion are differentially mediated. Neuropsychopharmacology 11:167–177

    Article  PubMed  CAS  Google Scholar 

  • Olanow CW (1992) An introduction to the free radical hypothesis in Parkinson’s disease. Ann Neurol Suppl 32:S2–S9

    Article  CAS  Google Scholar 

  • Ossowska K, Pietraszek M, Wardas J, Nowak G, Zajaczkowski W, Wolfarth S, Pilc A (2000) The role of glutamate receptors in antipsychotic drug action. Amino Acids 19:87–94

    Article  PubMed  CAS  Google Scholar 

  • Ouagazzal A, Nieoullon A, Amalric M (1994) Locomotor activation induced by MK-801 in the rat: postsynaptic interactions with dopamine receptors in the ventral striatum. Eur J Pharmacol 251:229–236

    Article  PubMed  CAS  Google Scholar 

  • Patsenka A, Antkiewicz-Michaluk L (2004) Inhibition of rodent brain monoamine oxidase and tyrosine hydroxylase by endogenous compounds—1,2,3,4-tetrahydroisoquinoline alkaloids. Pol J Pharmacol 56:727–734

    PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Peuskens J, Demily C, Thibaut F (2005) Treatment of cognitive dysfunction in schizophrenia. Clin Ther Suppl A 27:S25–S37

    Article  CAS  Google Scholar 

  • Pouzet B, Didriksen M, Arnt J (2002) Effects of the 5-HT(6) receptor antagonist, SB-271046, in animal models for schizophrenia. Pharmacol Biochem Behav 71:635–643

    Article  PubMed  CAS  Google Scholar 

  • Ragozzino ME, Unick KE, Gold PE (1996) Hippocampal acetylcholine release during memory testing in rats: augmentation by glucose. Proc Natl Acad Sci USA 93:4693–4698

    Article  PubMed  CAS  Google Scholar 

  • Ragozzino ME, Adams S, Kesner RP (1998) Differential involvement of the dorsal anterior cingulated and prelimbic-infralimbic areas of the rodent prefrontal cortex in spatial working memory. Behav Neurosci 112:293–303

    Article  PubMed  CAS  Google Scholar 

  • Reijmers LG, Vanderheyden PM, Peeters BW (1995) Changes in prepulse inhibition after local administration of NMDA receptor ligands in the core region of the rat nucleus accumbens. Eur J Pharmacol 272:131–138

    Article  PubMed  CAS  Google Scholar 

  • Schmidt CJ, Fadayel GM (1996) Regional effects of MK-801 on dopamine release: effects of competitive NMDA or 5-HT2A receptor blockade. J Pharmacol Exp Ther 277:1541–1549

    PubMed  CAS  Google Scholar 

  • Schwabe K, Koch M (2004) Role of the medial prefrontal cortex in N-methyl-D-aspartate receptor antagonist induced sensorimotor gating deficit in rats. Neurosci Lett 355:5–8

    Article  PubMed  CAS  Google Scholar 

  • Seeman P (1987) Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse 1(2):133–152

    Article  PubMed  CAS  Google Scholar 

  • Siuciak JA, McCarthy SA, Chapin DS, Reed TM, Vorhees CV, Repaske DR (2007) Behavioral and neurochemical characterization of mice deficient in the phosphodiesterase-1B (PDE1B) enzyme. Neuropharmacology 53:113–124

    Article  PubMed  CAS  Google Scholar 

  • Stone JM, Morrison PD, Pilowsky LS (2007) Glutamate and dopamine dysregulation in schizophrenia—a synthesis and selective review. J Psychopharmacol 21:440–452

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Braff DL, Masten VL, Geyer MA (1990a) Schizophrenic-like sensorimotor gating abnormalities in rats following dopamine infusion into the nucleus accumbens. Psychopharmacology (Berl) 101:414–420

    Article  CAS  Google Scholar 

  • Swerdlow NR, Mansbach RS, Geyer MA, Pulvirenti L, Koob GF, Braff DL (1990b) Amphetamine disruption of prepulse inhibition of acoustic startle is reversed by depletion of mesolimbic dopamine. Psychopharmacology (Berl) 100:413–416

    Article  CAS  Google Scholar 

  • Swerdlow NR, Keith VA, Braff DL, Geyer MA (1991) Effects of spiperone, raclopride, SCH 23390 and clozapine on apomorphine inhibition of sensorimotor gating of the startle response in the rat. J Pharmacol Exp Ther 256:530–536

    PubMed  CAS  Google Scholar 

  • Swerdlow NR, Braff DL, Taaid N, Geyer MA (1994a) Assessing the validity of an animal model of deficient sensorimotor gating in schizophrenic patients. Arch Gen Psychiatry 51:139–154

    PubMed  CAS  Google Scholar 

  • Swerdlow NR, Zisook D, Taaid N (1994b) Seroquel (ICI 204, 636) restores prepulse inhibition of acoustic startle in apomorphine-treated rats: similarities to clozapine. Psychopharmacology (Berl) 114:675–678

    Article  CAS  Google Scholar 

  • Swerdlow NR, Geyer MA, Braff DL (2001) Neural circuitry of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology (Berl) 156:194–215

    Article  CAS  Google Scholar 

  • Swerdlow NR, Shoemaker JM, Kuczenski R, Bongiovanni MJ, Neary AC, Tochen LS, Saint Marie RL (2006) Forebrain D1 function and sensorimotor gating in rats: effects of D1 blockade, frontal lesions and dopamine denervation. Neurosci Lett 402:40–45

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Shoemaker JM, Bongiovanni MJ, Neary AC, Tochen LS, Saint Marie RL (2007) Strain differences in the disruption of prepulse inhibition of startle after systemic and intra-accumbens amphetamine administration. Pharmacol Biochem Behav 87:1–10

    Article  PubMed  CAS  Google Scholar 

  • Tasaki Y, Makino Y, Ohta S, Hirobe M (1991) 1-Methyl-1,2,3,4-tetrahydroisoquinoline, decreasing in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mouse, prevents parkinsonism-like behavior abnormalities. J Neurochem 57:1940–1943

    Article  PubMed  CAS  Google Scholar 

  • Varty GB, Bakshi VP, Geyer MA (1999) M100907, a serotonin 5-HT2A receptor antagonist and putative antipsychotic, blocks dizocilpine-induced prepulse inhibition deficits in Sprague-Dawley and Wistar rats. Neuropsychopharmacology 20:311–321

    Article  PubMed  CAS  Google Scholar 

  • Verma A, Moghaddam B (1996) NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: modulation by dopamine. J Neurosci 16:373–379

    PubMed  CAS  Google Scholar 

  • Vetulani J, Antkiewicz-Michaluk L, Nalepa I, Sansone M (2003) A possible physiological role for cerebral tetrahydroisoquinolines. Neurotoxicity Res 5:147–155

    Article  Google Scholar 

  • Wasik A, Romańska I, Antkiewicz-Michaluk L (2007) The effect of an endogenous compound 1-methyl-1,2,3,4-tetrahydroisoquinoline on morphine-induced analgesia, dependence and neurochemical changes in dopamine metabolism in rat brain structures. J Physiol Pharmacol 58:235–252

    PubMed  CAS  Google Scholar 

  • Wedzony K, Golembiowska K, Klimek V (1993a) MK-801-induced symptoms of sensitization. The lack of correlation with the extracellular concentration of dopamine in the rat prefrontal cortex. Brain Res 625:333–336

    Article  PubMed  CAS  Google Scholar 

  • Wedzony K, Klimek V, Golembiowska K (1993b) MK-801 elevates the extracellular concentration of dopamine in the rat prefrontal cortex and increases the density of striatal dopamine D1 receptors. Brain Res 622:325–329

    Article  PubMed  CAS  Google Scholar 

  • Wedzony K, Golembiowska K, Zazula M (1994) Differential effects of CGP 37849 and MK-801, competitive and noncompetitive NMDA antagonists, with respect to the modulation of sensorimotor gating and dopamine outflow in the prefrontal cortex of rats. Naunyn Schmiedebergs Arch Pharmacol 350:555–562

    Article  PubMed  CAS  Google Scholar 

  • Wynn JK, Green MF, Sprock J, Light GA, Widmark C, Reist C, Erhart S, Marder SR, Mintz J, Braff DL (2007) Effects of olanzapine, risperidone and haloperidol on prepulse inhibition in schizophrenia patients: a double-blind, randomized controlled trial. Schizophr Res 95:134–142

    Article  PubMed  Google Scholar 

  • Yamakawa T, Ohta S (1997) Isolation of 1-methyl-1,2,3,4-tetrahydroisoquinoline-synthesizing enzyme from rat brain: a possible Parkinson’s disease-preventing enzyme. Biochem Biophys Res Commun 236:676–681

    Article  PubMed  CAS  Google Scholar 

  • Yamakawa T, Ohta S (1999) Biosynthesis of a parkinsonism-preventing substance, 1-methyl-1,2,3,4-tetrahydroisoquinoline, is inhibited by parkinsonism-inducing compounds in rat brain mitochondrial fraction. Neurosci Lett 259:157–160

    Article  PubMed  CAS  Google Scholar 

  • Yamakawa T, Kotake Y, Fuijtani M, Shintani H, Makino Y, Otha S (1999) Regional distribution of parkinsonism-preventing endogenous tetrahydroisoquinoline derivatives and an endogenous parkinsonism-preventing substance-synthesizing enzyme in monkey brain. Neurosci Lett 276:68–70

    Article  PubMed  CAS  Google Scholar 

  • Zahrt J, Taylor JR, Mathew RG, Arnsten AF (1997) Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci 17:8528–8535

    PubMed  CAS  Google Scholar 

  • Zavitsanou K, Cranney J, Richardson R (1999) Dopamine antagonists in the orbital prefrontal cortex reduce prepulse inhibition of the acoustic startle reflex in the rat. Pharmacol Biochem Behav 63:55–61

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Andrzej Bojarski the Head of Medicinal Chemistry Department and Dr. Jan Boksa for synthesis of 1-methyl-1,2,3,4-tetrahydroisoquinoline, and gratefully acknowledge the technical assistance of Maria Kafel and Krzysztof Michalski. The work was supported by the Polish MNSW Scientific Network fund and by the statutory fund of the Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucyna Antkiewicz-Michaluk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pietraszek, M., Michaluk, J., Romańska, I. et al. 1-Methyl-1,2,3,4-tetrahydroisoquinoline Antagonizes a Rise in Brain Dopamine Metabolism, Glutamate Release in Frontal Cortex and Locomotor Hyperactivity Produced by MK-801 but not the Disruptions of Prepulse Inhibition, and Impairment of Working Memory in Rat. Neurotox Res 16, 390–407 (2009). https://doi.org/10.1007/s12640-009-9097-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-009-9097-y

Keywords

Navigation