Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Mosquitocidal properties of Bacillus species isolated from mangroves of Vellar estuary, Southeast coast of India

  • Original Article
  • Published:
Journal of Parasitic Diseases Aims and scope Submit manuscript

This article was retracted on 17 January 2019

This article has been updated

Abstract

Samples collected from the mangroves of Vellar estuary yielded a mosquitocidal bacterium, whose secondary metabolites exhibited mosquito larvicidal and pupicidal activity. The bacterium was isolated using standard microbiological methods and identified using classical biochemical tests. The mosquitocidal bacterium was identified as Bacillus subtilis, Bacillus thuringiensis, Bacillus sphaericus and Bacillus cereus. Mosquitocidal metabolite(s) was separated from the culture supernatant of the bacterium and its efficacy was against the larval and pupal stages of two different species of mosquitoes and determined in terms of LC50 and LC90. Mosquito larvicidal activity in terms of LC50 against Anopheleus stephensi and Aedes aegypti was 4.374 and 7.406 μl/ml and its pupicidal activity was 4.928 and 9.865 μl/ml, respectively. The present study proved that the mosquitocidal properties of the Bacillus species isolated from mangroves of Vellar estuary was evaluated as target species of mosquito vectors. This is an ideal eco-friendly approach for the vector control programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 17 January 2019

    The Editor-in-Chief has retracted this article [1] because of overlap with previously published articles [2?4].

  • 17 January 2019

    The Editor-in-Chief has retracted this article [1] because of overlap with previously published articles [2���4].

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    Article  CAS  Google Scholar 

  • Achs J, Malaney P (2002) The economic and social burden of malaria. Nature 15:680–685

    Google Scholar 

  • Ali A, Nayar JK, Xue RD (1995) Comparative toxicity of selected larvicides and insect growth regulators to a Florida laboratory, population of Aedes albopictus. J Am Mosq Control Assoc 11(1):72–76

    CAS  PubMed  Google Scholar 

  • Armengol G, Hernandez J, Velez JG, Orduz S (2006) Long-lasting effects of a Bacillus thuringiensis serovar israelensis experimental tablet formulation for Aedes aegypti (Diptera: Culicidae) control. J Econ Entomol 99:1590–1595

    Article  Google Scholar 

  • Aronson AI, Beckman W, Dunn P (1986) Bacillus thuringiensis and related insect pathogens. Microbiol Rev 50:1–24

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balaraman K (1995) Mosquito control potential of Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus. ICMR Bull 25:45–51

    Google Scholar 

  • Beatty ME, Letson W, Edgil DM (2007) Estimating the total world population at risk for locally acquired dengue infection. In: Proceedings of 56th annual meeting of American society of tropical medicine and hygiene, Philadelphia, Pennsylvania, USA, pp 4–8

  • Blackwood KS, Turenne CY, Harmsen D, Kabani AM (2004) Reassessment of sequence-based targets for identification of Bacillus species. J Clin Microbiol 42:1626–1630

    Article  CAS  Google Scholar 

  • Chandra G, Bhattacharjee I, Chatterjee SN (2008) Mosquito control by larvivorous fish. Indian J Med Res 127:13–27

    CAS  PubMed  Google Scholar 

  • Chatterjee S, Subhra Ghosh T, Das S (2010) Virulence of Bacillus cereus as natural facultative pathogen of Anopheles subpictus Grassi (Diptera: Culicidae) larvae in submerged rice-fields and shallow ponds. Afr J Biotechnol 9(41):6983–6987

    Google Scholar 

  • Cooping LG, Menn JJ (2001) Biopesticides: a review of their action, applications and efficacy. Pest Manag Sci 56:651–676

    Article  Google Scholar 

  • Darriet F, Hougard JM (2002) An isolate of Bacillus circulans toxic to mosquito larvae. J Am Mosq Control Assoc 18:65–67

    PubMed  Google Scholar 

  • Das PK, Amalraj DD (1997) Biological control of malarial vectors. Indian J Med 106:174–197

    CAS  Google Scholar 

  • Das K, Mukherjee AK (2006) Assessment of mosquito larvicidal potency of cyclic lipopeptides produced by Bacillus subtilis strains. Acta Trop 97:168–173

    Article  CAS  Google Scholar 

  • Das NG, Goswami D, Rabha B (2007) Preliminary evaluation of mosquito larvicidal efficacy of plant extracts. J Vector Borne Dis 44:145–148

    CAS  PubMed  Google Scholar 

  • de Barjac H, Sebald M, Charles JF, Cheong WH, Lee HL (1990) Clostridium bifermentans serovar Malaysia, a new anaerobic bacterium pathogen to mosquito and blackfly larvae. CR Acad Sci III 310:383–387

    Google Scholar 

  • Federici BA, Park HW, Sakano Y (2006) Insecticidal protein crystals of Bacillus thuringiensis. In: Shively JM (ed) Microbiology monographs series, inclusions in prokaryotes, vol 1. Springer, Berlin, pp 195–236

    Chapter  Google Scholar 

  • Finney DJ (1971) Probit analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Geetha I, Manonmani AM (2008) Mosquito pupicidal toxin production by Bacillus subtilis subsp. subtilis. Biol Control 44(2):242–247

    Article  CAS  Google Scholar 

  • Geetha I, Prabakaran G, Paily KP, Manonmani AM, Balaraman K (2007) Characterisation of three mosquitocidal Bacillus strains isolated from mangrove forest. Biol Control 42:34–40

    Article  Google Scholar 

  • Geetha I, Manonmani AM, Paily KP (2010) Identification and characterization of a mosquito pupicidal metabolite of a Bacillus subtilis subsp. subtilis strain. Appl Microbiol Biotechnol 86(6):1737–1744

    Article  CAS  Google Scholar 

  • Georghiou GP, Wirth MC (1997) Influence of exposure to single versus multiple toxins of Bacillus thuringiensis subsp. israelensis on development of resistance in the mosquito Culex quinquefasciatus (Diptera: Culicidae). Appl Environ Microbiol 63:1095–1101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta DK, Vyas M (1989) Efficacy of Bacillus subtilis against mosquito larvae Anopheles culicifacies. Zeitschrift fuer Angewandte Zoologie 76:85–91

    Google Scholar 

  • Khyami-Horani H, Katbeh-Bader A, Mohsen ZH (1999) Isolation of endospore forming bacilli toxic to Culiseta longiareolata (Diptera: Culicidae) in Jordan. Lett Appl Microbiol 128:57–60

    Article  Google Scholar 

  • Kovendan K, Murugan K, Vincent S, Kamalakannan S (2011) Larvicidal efficacy of Jatropha curcas and bacterial insecticide, Bacillus thuringiensis, against lymphatic filarial vector, Culex quinquefasciatus Say. (Diptera: Culicidae). Parasitol Res 109:1251–1257

    Article  Google Scholar 

  • Kovendan K, Murugan M, Vincent S, Barnard DR (2012) Studies on larvicidal and pupicidal activity of Leucas aspera Willd. (Lamiaceae) and bacterial insecticide, Bacillus sphaericus, against malarial vector, Anopheles stephensi Liston. (Diptera: Culicidae). Parasitol Res 110:195–203

    Article  Google Scholar 

  • Krattiger F (1997) Insect resistant crops: a case study of Bacillus thuringiensis (BT) and its transfer to developing countries. ISAAA Briefs 2:42

    Google Scholar 

  • Kumar A, Valecha N, Jain T, Dash AP (2007) Burden of malaria in India: retrospective and prospective view. Am J Trop Med Hyg 77:69–78

    Article  Google Scholar 

  • Lee YW, Zairi J (2005) Laboratory evaluation of Bacillus thuringiensis H-14 against Aedes aegypti. Trop Biomed 22:5–10

    CAS  PubMed  Google Scholar 

  • Lingenfelser A, Rydzanicz K, Kaiser A (2010) Mosquito fauna and perspectives for integrated control of urban vector-mosquito populations in Southern Benin (West Africa). Ann Agric Environ Med 17(1):49–57

    PubMed  Google Scholar 

  • Maeda M, Mizuki E, Hara M, Tanaka R, Akao T, Yamashita S, Ohba M (2001) Isolation of Bacillus thuringiensis from intertidal brackish sediments in mangroves. Microbiol Res 156:195–198

    Article  CAS  Google Scholar 

  • Mahesh Kumar P, Murugan K, Kovendan K, Subramaniam J, Amaresan D (2012) Mosquito larvicidal and pupicidal efficacy of Solanum xanthocarpum (Family: Solanaceae) leaf extract and bacterial insecticide, Bacillus thuringiensis, against Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res. doi:10.1007/s00436-011-2797-2

    Article  Google Scholar 

  • Medeiros FP, Santos MA, Regis L, Rios EM, Rolim Neto PJ (2005) Development of a Bacillus sphaericus tablet formulation and its evaluation as a larvicide in the biological control of Culex quinquefasciatus. Mem Inst Oswaldo Cruz 100:431–434

    Article  Google Scholar 

  • Murugan K, Thangamathi P, Jeyabalan D (2002) Interactive effect of botanical and Bacillus thuringiensis subsp. israelensis on Culex quinquefasciatus Say. J Sci Ind Res 61:1068–1076

    Google Scholar 

  • Nielsen-Leroux C, Charles JF, Thiery I, Georghiou GP (1995) Resistance in a laboratory population of Culex quinquefasciatus (Diptera: Culicidae) to Bacillus sphaericus binary toxin is due to a change in the receptor on midgut brush-border membranes. Eur J Biochem 228:206–210

    Article  CAS  Google Scholar 

  • Ohba M, Wasano N, Mizuki E (2000) Bacillus thuringiensis soil populations naturally occurring in Ryukyus, a subtropic region of Japan. Microbiol Res 155:17–22

    Article  CAS  Google Scholar 

  • Pandey V, Agrawal V, Raghavendra K, Dash AP (2007) Strong larvicidal activity of three species of Spilanthes (Akarkara) against malaria (Anopheles stephensi Liston, Anopheles culicifacies, species C) and filaria vector (Culex quinquefasciatus Say). Parasitol Res 102:171–174

    Article  Google Scholar 

  • Park HW, Federici BA (2009) Genetic engineering of bacteria to improve efficacy using the insecticidal proteins of Bacillus species. In: Stock SP (ed) Insect pathogens: molecular approach and techniques. CABI International, Cambridge, pp 275–305

    Chapter  Google Scholar 

  • Park HW, Bideshi DK, Federici BA (2010) Properties and applied use of the mosquitocidal bacterium, Bacillus sphaericus. J Asia Pac Entomol 13:159–168

    Article  CAS  Google Scholar 

  • Plearnpis L, Haruyuki A, Sakol P (2001) Isolation of bacterial strains colonizable in mosquito larval guts as novel host cells for mosquito control. J Biosci Bioeng 92(4):342–345

    Article  Google Scholar 

  • Poopathi S, Tyagi BK (2006) The challenge of mosquito control strategies; from primordial to molecular approaches. Biotechnol Mol Biol Rev 1(2):51–65

    Google Scholar 

  • Poopathi S, Mani TR, Rao DR, Baskaran G, Kabilan L (1999) Cross-resistance to Bacillus sphaericus strains in Culex quinquefasciatus resistant to B. sphaericus 1593M. Southeast Asian J Trop Med Publ Health 30:477–481

    CAS  Google Scholar 

  • Rao DR, Mani TR, Rajendran R (1995) Development of a high level of resistance to Bacillus sphaericus in a field population of Culex quinquefasciatus from Kochi, India. J Am Mosq Control Assoc 11:1–5

    CAS  PubMed  Google Scholar 

  • Rodriguez MM, Bisset J, de Fernandez DM, Lauzan L, Soca A (2001) Detection of insecticide resistance in A. aegypti (Diptera: Culicidae) from Cuba and Veninzula. J Med Entomol 38:623–628

    Article  CAS  Google Scholar 

  • Sharma SK, Upadhyay AK, Haque MA, Tyagi PK, Raghavendra K, Dash AP (2010) Wash-resistance and field evaluation of alphacypermethrin treated long-lasting insecticidal net (Interceptor) against malaria vectors Anopheles culicifacies and Anopheles fluviatilis in a tribal area of Orissa, India. Acta Trop 116(1):24–30

    Article  CAS  Google Scholar 

  • Shida O, Takagi H, Kadowaki K, Yano H, Komagata K (1996) Differentiation of species in the Bacillus brevis group and the Bacillus aneurinolyticus group based on the electrophoretic whole-cell protein pattern. Antonie Van Leeuwenhoek 70:31–39

    Article  CAS  Google Scholar 

  • Silva-Filha MH, Regis L, Nielson-LeRoux C (1995) Low-level resistance to Bacillus sphaericus in a field-treated population of Culex quinquefasciatus (Diptera: Culicidae). J Econ Entomol 88:525–530

    Article  Google Scholar 

  • Sneath PHA (1986) Endospore forming Gram positive rods and cocci. In: Sneath PHA, Mair N, Sharpe M, Holt J (eds) Bergey’s manual of systematic bacteriology, vol II. Williams Wilkins, Baltimore, pp 1104–1207

    Google Scholar 

  • Sourisseau M, Schilte C, Casartelli N (2007) Characterization of reemerging chikungunya virus. PLoS Pathog 3:89

    Article  Google Scholar 

  • Su T, Mulla MS (2004) Documentation of high-level Bacillus sphaericus 2362 resistance in field populations of Culex quinquefasciatus breeding in polluted water in Thailand. J Am Mosq Control Assoc 20:405–411

    PubMed  Google Scholar 

  • Surendran A, Vennison SJ (2011) Occurrence and distribution of mosquitocidal Bacillus sphaericus in soil. Acad J Entomol 4(1):17–22

    Google Scholar 

  • Teng HJ, Lu LC, Wu YL (2005) Evaluation of various control agents against mosquito larvae in rice paddies in Taiwan. J Vector Ecol 30:126–132

    PubMed  Google Scholar 

  • Tyrell DJ, Lee A, Bulla JR (1981) Characterization of spore coat proteins of Bacillus thuringiensis and Bacillus cereus. Comp Biochem Physiol Part B: Biochem Mol Biol 70(3):535–539

    Article  Google Scholar 

  • Wirth MC, Georghiou GP, Federici BA (1997) CytA enables CryIV endotoxins of Bacillus thuringiensis to overcome high levels of CryIV resistance in the mosquito, Culex quinquefasciatus. Proc Natl Acad Sci USA 94:10536–10540

    Article  CAS  Google Scholar 

  • Wirth MC, Delecluse A, Walton WE (2004) Laboratory selection for resistance to Bacillus thuringiensis subsp. Jegathesan or a component toxin, Cry 11B, in Culex quinquefasciatus (Diptera: Culicidae). J Med Entomol 41(3):435–441

    Article  CAS  Google Scholar 

  • Wirth MC, Zaritsky A, Ben-Dov E, Khasdan R, Boussiba S, Walton S (2007) Cross resistance spectra of Culex quinquefasciatus resistant to mosquitocidal toxins of Bacillus thuringiensis towards recombinant Escherichia coli expressing genes from B. thuringiensis spp. Israelensis. Environ Microbiol 9:1393–1401

    Article  CAS  Google Scholar 

  • World Health Organization (1992) Vector resistance to pesticides. Fifth report of the WHO expert committee on vector biology and control. Technical Report Series No. 818. Geneva, Switzerland, WHO

  • World Health Organization (2009) Mosquito wars. Bull World Health Organ 87:167–168

  • Yuan Z, Zhang YM, Cali Q, Liu EY (2000) High-level field resistance to Bacillus sphaericus C3-41 in Culex quinquefasciatus from southern China. Biocontrol Sci Technol 10:41–49

    Article  Google Scholar 

  • Zhang WJ, Jiang FB, Ou JF (2011) Global pesticide consumption and pollution: with China as a focus. Proc Int Acad Ecol Environ Sci 1(2):125–144

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the authorities of Annamalai University for providing the necessary facilities and the first author thanks to the INCOIS-SATCORE Project (G4/515/2008), Ministry of Earth Sciences (Government of India) and second author thanks to the DST-PURSE Programme, Department of Science and Technology (Government of India) for financial support during the period of study. We also thank the anonymous referees for the valuable comments, which greatly improved our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Balakrishnan.

About this article

Cite this article

Balakrishnan, S., Indira, K. & Srinivasan, M. RETRACTED ARTICLE: Mosquitocidal properties of Bacillus species isolated from mangroves of Vellar estuary, Southeast coast of India. J Parasit Dis 39, 385–392 (2015). https://doi.org/10.1007/s12639-013-0371-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12639-013-0371-9

Keywords

Navigation