Skip to main content
Log in

RF/Analog and Linearity Performance Evaluation of Lattice-matched Ultra-thin AlGaN/GaN Gate Recessed MOSHEMT with Silicon Substrate

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this article, the authors have demonstrated and analyzed various analog/RF, and linearity performances of an AlGaN/GaN gate recessed MOSHEMT (GR-MOSHEMT) grown on a Si substrate with mathematical modeling based Technology Computer-Aided Design (TCAD) simulation. Specifically, an Al2O3 dielectric GR-MOSHEMT has shown tremendous potential in terms of AC/DC figure of merits (FOM’s) such as low leakage current, high transconductance, high Ion/Ioff current ratio, and excellent linear properties corresponding to conventional AlGaN/GaN HEMT and MOSHEMT. The figure-of-merit metrics such as VIP2, VIP3, IIP3, and IDM3 are performed for the different drain to source voltages (VDS) of 2.5 V, 5 V, and 10 V. All the modeling and simulation results are generated by Commercial Silvaco TCAD and found to be satisfactory in terms of high frequency and power applications. The present GR-MOSHEMT device shows superior performance with a threshold voltage of 0.5 V, a Current density of 888 mA, a high transconductance of 225 mS/mm, and a high unit gain cut-off frequency 0.91GHz. The developed AlGaN/GaN GR-MOSHEMT considerably improves the device performance and is also suitable for high power distortion-less RF applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data available within the manuscript.

References

  1. Kim H-S, Kang M-J, Kim JJ, Seo K-S, Ho-Young C (2020) Effects of recessed-gate structure on AlGaN/GaN-on-SiC MIS-HEMTs with thin AlOxNy MIS gate. Materials 13(7):1538

    Article  CAS  Google Scholar 

  2. Basu S, Singh PK, Sze P-W, Wang Y-H (2010) AlGaN/GaN metal-oxide-semiconductor high electron mobility transistor with liquid phase deposited Al2O3 as gate dielectric. J Electrochem Soc 157(10):H947

    Article  CAS  Google Scholar 

  3. Hasan MR, Motayed A, Fahad MS, Rao MV (2017) Fabrication and comparative study of DC and low frequency noise characterization of GaN/AlGaN based MOS-HEMT and HEMT. J Vac Sci Technol B 35(5):052202

    Article  Google Scholar 

  4. Lee C-T, Chang J-H, Tseng C-Y (2016) Monolithic enhancement-mode and depletion-mode GaN-based MOSHEMTs. In: Gallium Nitride Materials and Devices XI, vol 9748. International Society for Optics and Photonics, p 97480Z

  5. Taube A, Sochacki M, Szmidt J, Kamińska E, Piotrowska A (2014) Modelling and simulation of normally-off AlGaN/GaN MOS-HEMTs. Int J Electron Telecommun 60(3):253–258

  6. Huang KN, Lin YC, Lee JH, Hsu CC, Yao JN, Wu CY, Chien CH, Chang EY (2020) Study of tri-gate AlGaN/GaN MOS-HEMTs for power application. Micro Nano Eng: 100073

  7. Verma S, Loan SA, Alamoud AM, Alharbi AG (2018) Hybrid AlGaN/GaN high-electron mobility transistor: design and simulation. IET Circ Devices Syst 12(1):33–39

    Article  Google Scholar 

  8. Yue Y-Z, Yue H, Zhang J-C, Feng Q, Ni J-Y, Ma X-H (2008) A study on Al2O3 passivation in GaN MOS-HEMT by pulsed stress. Chin Phys B 17(4):1405

    Article  CAS  Google Scholar 

  9. Meng D, Lin S, Wen CP, Wang M, Wang J, Hao Y, Zhang Y, Lau KM, Wu W (2013) Low leakage current and high-cutoff frequency AlGaN/GaN MOSHEMT using submicrometer-footprint thermal oxidized TiO2/NiO as gate dielectric. IEEE Electron Device Lett 34(6):738–740

    Article  CAS  Google Scholar 

  10. Touati Z-e, Hamaizia Z , Messai Z (2015) DC and RF characteristics of AlGaN/GaN HEMT and MOS-HEMT. In: 2015 4th International Conference on Electrical Engineering (ICEE). IEEE, pp 1.4

  11. Chakroun A, Jaouad A, Bouchilaoun M, Arenas O, Soltani A, Maher H (2017) Normally-off AlGaN/GaN MOS‐HEMT using ultra‐thin Al0. 45Ga0. 55 N barrier layer. Phys Status Solidi A 214(8):1600836

  12. Sandeep V, Charles Pravin J, Ramesh Babu A, Prajoon P (2020) Impact of AlInN Back-Barrier Over AlGaN/GaN MOS-HEMT With HfO2 dielectric using cubic spline interpolation technique. IEEE Trans Electron Devices 67(9):3558–3563

    Article  CAS  Google Scholar 

  13. Wu T-L, Tang S-W, Jiang H-J (2020) Investigation of recessed gate AlGaN/GaN MIS-HEMTs with double AlGaN barrier designs toward an enhancement-mode characteristic. Micromachines 11(2):163

  14. Yue Y, Hao Y, Zhang J, Ni J, Mao Wei, Feng Q, Liu L (2008) AlGaN/GaN MOS-HEMT With HfO2 dielectric and Al2O3 Interfacial passivation layer grown by atomic layer deposition. IEEE Electron Device Lett 29(8):838–840

    Article  CAS  Google Scholar 

  15. Jena K, Swain R, Lenka TR (2016) Modeling and comparative analysis of DC characteristics of AlGaN/GaN HEMT and MOSHEMT devices. Int J Num Modell Electron Netw Devices Fields 29(1):83–92

    Article  Google Scholar 

  16. Roccaforte F, Greco G, Fiorenza P, Iucolano F (2019) An overview of normally-off GaN-based high electron mobility transistors. Materials 12(10):1599

  17. Saito W, Takada Y, Kuraguchi M, Tsuda K, Omura I (2006) Recessed-gate structure approach toward normally off high-voltage AlGaN/GaN HEMT for power electronics applications. IEEE Trans Electron Devices 53(2):356–362

    Article  CAS  Google Scholar 

  18. Ťapajna M, Kuzmík J (2013) Control of threshold voltage in GaN based metal–oxide–semiconductor high-electron mobility transistors towards the normally-off operation. Jpn J Appl Phys 52:08JN08

    Article  Google Scholar 

  19. Zhou H, Lou X, Sutherlin K, Summers J, Kim SB, Chabak KD, Gordon RG (2017) DC and RF performance of AlGaN/GaN/SiC MOSHEMTs with deep sub-micron T-gates and atomic layer epitaxy MgCaO as gate dielectric. IEEE Electron Device Lett 38(10):1409–1412

    Article  CAS  Google Scholar 

  20. Husna F, Lachab M, Sultana M, Adivarahan V, Fareed Q, Khan A (2012) High-temperature performance of AlGaN/GaN MOSHEMT with SiO2 gate insulator fabricated on Si (111) substrate. IEEE Trans Electron Devices 59(9):2424–2429

  21. Mazumder S, Li S-H, Wu Z-G, Wang Y-H (2021) Combined implications of UV/O3 interface modulation with HfSiOX surface passivation on AlGaN/AlN/GaN MOS-HEMT. Crystals 11(2):136

  22. Wu , Lu W, Paul KL (2015) Normally-OFF AlGaN/GaN MOS-HEMT with a two-step gate recess. In: 2015 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC). IEEE, pp 594-596

  23. Swain R, Jena K, Gaini A, Lenka TR (2014) Comparative study of AlN/GaN HEMT and MOSHEMT structures by varying oxide thickness. In: 2014 IEEE 9th Nanotechnology Materials and Devices Conference (NMDC). IEEE, pp 128-131

  24. Verma M (2020) Design and analysis of AlGaN/GaN based DG MOSHEMT for high-frequency application. Trans Electr Electron Mater 21(4):427–435

    Article  Google Scholar 

  25. Hao Y, Yang L, Ma X, Ma J, Cao M, Pan C, Zhang J (2011) High-performance microwave gate-recessed AlGaN/AlN/GaN MOS-HEMT with 73% power-added efficiency. IEEE Electron Device Lett 32(5):626–628

    Article  CAS  Google Scholar 

  26. Chakrabarty A, Swain R (2020) Modelling of fin width dependent threshold voltage in fin shaped nano channel AlGaN/GaN HEMT. Superlattice Microstruct 141:106497

    Article  CAS  Google Scholar 

  27. Zine-eddine T, Zahra H, Zitouni M (2019) Design and analysis of 10 nm T-gate enhancement-mode MOS-HEMT for high power microwave applications. J Sci Adv Mater Devices 4(1):180–187

    Article  Google Scholar 

  28. Silvaco (2013) ATLAS user’s manual: device simulation Software. Silvaco, Santa Clara

    Google Scholar 

  29. Vurgaftman I, Meyer JR, Ram-Mohan LR (2001) Band parameters for III–V compound semiconductors and their alloys. J Appl Phys 89(11):5815–5875

    Article  CAS  Google Scholar 

  30. Moses PG, Georg M, Miao Q, Van de Walle CG (2011) Hybrid functional investigations of band gaps and band alignments for AlN, GaN, InN, and InGaN. J Chem Phys 134:8

    Article  Google Scholar 

  31. Angerer H, Brunner D, Freudenberg F, Ambacher O, Stutzmann M, Höpler R, Metzger T et al (1997) Determination of the Al mole fraction and the band gap bowing of epitaxial Al xGa1– xN films. Appl Phys Lett 71(11):1504–1506

    Article  CAS  Google Scholar 

  32. Piprek J (2013) Semiconductor optoelectronic devices: introduction to physics and simulation. Elsevier, Amsterdam

  33. Ambacher O, Foutz B, Smart J, Shealy JR, Weimann NG, Chu K, Murphy M et al (2000) Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J Appl Phys 87(1):334–344

    Article  CAS  Google Scholar 

  34. Yigletu FM, Mulugeta S, Khandelwal TA, Iniguez B (2013) Compact charge-based physical models for current and capacitances in AlGaN/GaN HEMTs. IEEE Trans Electron Devices 60(11):3746–3752

    Article  CAS  Google Scholar 

  35. Farahmand M, Garetto C, Bellotti E, Brennan KF, Goano M, Ghillino E, Ghione G, Albrecht JD, Ruden PP (2001) Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: binaries and ternaries. IEEE Trans Electron Devices 48(3):535–542

  36. Braga N, Mickevicius R, Gaska R, Hu X, Shur MS, Khan MC, Simin G, Yang J (2004) Simulation of hot electron and quantum effects in AlGaN/GaN heterostructure field effect transistors. J Appl Phys 95(11):6409–6413

    Article  CAS  Google Scholar 

  37. Jena K, Swain R, Lenka TR (2016) Effect of thin gate dielectrics on DC, radio frequency and linearity characteristics of lattice-matched AlInN/AlN/GaN metal–oxide–semiconductor high electron mobility transistor. IET Circ Devices Syst 10(5):423–432

    Article  Google Scholar 

  38. Ghosh S, Mondal A, Kar M, Kundu A (2021) Study of effective graded oxide capacitance and length variation on analog, rf and power performances of dual gate underlap MOS-HEMT

  39. Freedsman JJ, Kubo T, Egawa T (2013) High drain current density E-Mode Al2O3/AlGaN/GaN MOS-HEMT on Si with enhanced power device figure-of-merit (4 × 108 V2Ω-1 cm-2). IEEE Trans Electron Devices 60(10):3079–3083

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors have contributed mutually regarding this paper.

Corresponding author

Correspondence to Abdul Naim Khan.

Ethics declarations

Ethics Approval and Consent to Participate

The authors declared that the manuscript ethics is approved as per the journal.

Consent for Publication

The authors give full consent for the publication of this research work.

Conflict of Interest

Not applicable.

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.N., Jena, K., Routray, S. et al. RF/Analog and Linearity Performance Evaluation of Lattice-matched Ultra-thin AlGaN/GaN Gate Recessed MOSHEMT with Silicon Substrate. Silicon 14, 8599–8608 (2022). https://doi.org/10.1007/s12633-021-01605-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01605-3

Keywords

Navigation