Skip to main content
Log in

Thermal Stability Investigation of Synthesized Epoxy-Polyurethane/Silica Nanocomposites

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this research, epoxy polyurethane-nano silica nanocomposites have been synthesized using an in-situ method, for which SiO2 nanocomposites had been initially ready in N, N-dimethylformamide (DMF) via a Stöber procedure, and after that, their surfaces have been altered by 3-Methacryloxypropyltriemethoxysilane (MPS); the resultants have been distinguished by using of FT-IR and FESEM analyses. Furthermore, Novolac epoxy resin (EP) has been equipped with epichlorohydrin and Novolac in the alkaline environment, in contrast, epoxy acrylate resin (EA) has been manufactured based on the ring-opening reaction of EP which samples had been identification through FT-IR and HNMR. In the following, we have exposed the modified MPS-SiO2 nanoparticles to electro sonic waves in DMF solvent and had the monomers of acrylate and the initiator of azo-bis-isobutyronitrile (AIBN) added in a uniform and dropwise manner, leading to the occurrence of in situ polymerization. The synthesized nanoparticles have been characterized utilizing TGA, FT-IR, XRD, and SEM/EDX analysis. According to the XRD pattern, the SiO2 nanoparticles contain a high crystallinity and an average size of about 10 nm. The obtained results have indicated that the thermal resistance of polyurethane can be enhanced by adding up to 5 % of core-shell nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Carré C, Ecochard Y, Caillol S, Avérous L (2019) From the synthesis of biobased cyclic carbonate to polyhydroxyurethanes: A promising route towards renewable NonIsocyanate Polyurethanes. Chemsuschem 12(15):3410–3430

    Article  PubMed  CAS  Google Scholar 

  2. Alinejad M, Henry C, Nikafshar S, Gondaliya A, Bagheri S, Chen N, Singh SK, Hodge DB, Nejad M (2019)Lignin-based polyurethanes: Opportunities for bio-based foams, elastomers, coatings, and adhesives. Polymers 11(7):1202

    Article  PubMed Central  CAS  Google Scholar 

  3. Furtwengler P, Avérous L (2018) Renewable polyols for advanced polyurethane foams from diverse biomass resources. Polym Chem 9(32):4258–4287

    Article  CAS  Google Scholar 

  4. Dalawai SP, Aly MAS, Latthe SS, Xing R, Sutar RS, Nagappan S, Ha C-S, Sadasivuni KK, Liu S (2020) Recent advances in the durability of superhydrophobic self-cleaning technology: A critical review. Prog Org Coat 138:105381

    Article  CAS  Google Scholar 

  5. Behnam R, Roghani-Mamaqani H, Salami‐Kalajahi M, Mardani H (2020) Effect of aliphatic and aromatic chain extenders on the thermal stability of graphene oxide/polyurethane hybrid composites prepared by sol‐gel method. ChemistrySelect (3):962–967

  6. Loste J, Lopez-Cuesta J-M, Billon L, Garay H, Save M (2019) Transparent polymer nanocomposites: An overview on their synthesis and advanced properties. Prog Polym Sci 89:133–158

    Article  CAS  Google Scholar 

  7. Jang K-I, Chung HU, Xu S, Lee CH, Luan H, Jeong J, Cheng H, Kim G-T, Han SY, Lee JW (2015) Soft network composite materials with deterministic and bio-inspired designs. Nat Commun 6(1):1–11

    Article  Google Scholar 

  8. Jadhav H, Jadhav A, Takkalkar P, Hossain N, Nizammudin S, Zahoor M, Jamal M, Mubarak NM, Griffin G, Kao N (2020) Potential of polylactide based nanocomposites-nanopolysaccharide filler for reinforcement purpose: a comprehensive review. J Polym Res 27(11):330

  9. Pinnavaia TJ, Beall GW (2000)Polymer-clay nanocomposites. Wiley, Hoboken

    Google Scholar 

  10. Pavkov T, Oberer M, Egelseer EM, Sára M, Sleytr UB, Keller W (2003) Crystallization and preliminary structure determination of the C-terminal truncated domain of the S-layer protein SbsC. Acta Crystallogr Sect D: Biol Crystallogr 59(8):1466–1468

    Article  CAS  Google Scholar 

  11. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49(15):3187–3204

    Article  CAS  Google Scholar 

  12. Momen G, Farzaneh M (2011) Survey of micro/nanofiller use to improve silicone rubber for outdoor insulators. Rev Adv Mater Sci 27(1):1–13

    CAS  Google Scholar 

  13. Xiong R, Grant AM, Ma R, Zhang S, Tsukruk VV (2018)Naturally-derived biopolymer nanocomposites: Interfacial design, properties, and emerging applications. Mater Sci Eng R: Rep 125:1–41

    Article  Google Scholar 

  14. Kausar A, Rafique I, Muhammad B (2016) Review of applications of polymer/carbon nanotubes and epoxy/CNT composites. Polym Plast Technol Eng 55(11):1167–1191

    Article  CAS  Google Scholar 

  15. Sanyal M, Datta A, Hazra S (2002) Morphology of nanostructured materials. Pure Appl Chem 74(9):1553–1570

    Article  CAS  Google Scholar 

  16. Hanemann T, Szabó DV (2010)Polymer-nanoparticle composites: from synthesis to modern applications. Materials 3(6):3468–3517

    Article  CAS  PubMed Central  Google Scholar 

  17. Rezaeifar A, Mesgari M, Mehmani B (2005) Activities in Iran for standardization of nanotechnology. In: Integrated Nanosystems: Design, Synthesis, and Applications 42088:87–88

  18. Carosio F, Cuttica F, Medina L, Berglund LA (2016) Clay nanopaper as multifunctional brick and mortar fire protection coating—wood case study. Mater Des 93:357–363

    Article  CAS  Google Scholar 

  19. Tavakoli A, Sohrabi M, Kargari A (2007) A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. Chem Pap 61(3):151–170

    Article  CAS  Google Scholar 

  20. Kruis FE, Fissan H, Rellinghaus B (2000) Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles. Mater Sci Eng B 69:329–334

    Article  Google Scholar 

  21. Hashemi R, Nassar NN, Almao PP (2014) Nanoparticle technology for heavy oil in-situ upgrading and recovery enhancement: Opportunities and challenges. Appl Energy 133:374–387

    Article  CAS  Google Scholar 

  22. Zhang K, Huang J, Yu G, Zhang Q, Deng S, Wang B (2013) Destruction of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) by ball milling. Environ Sci Technol 47(12):6471–6477

    Article  CAS  PubMed  Google Scholar 

  23. Kupiec K, Konieczka P, Namieśnik J (2009) Characteristics, chemical modification processes as well as the application of silica and its modified forms. Crit Rev Anal Chem 39(2):60–69

    Article  CAS  Google Scholar 

  24. Guo J, Liu X, Cheng Y, Li Y, Xu G, Cui P (2008)Size-controllable synthesis of monodispersed colloidal silica nanoparticles via hydrolysis of elemental silicon. J Colloid Interface Sci 326(1):138–142

    Article  CAS  PubMed  Google Scholar 

  25. Zou H, Wu S, Shen J (2008)Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108(9):3893–3957

    Article  CAS  PubMed  Google Scholar 

  26. Xie Y, Hill CA, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: A review. Compos Part A: Appl Sci Manufac 41(7):806–819

    Article  CAS  Google Scholar 

  27. Kohut A, Voronov A, Peukert W (2007) An effective way to stabilize colloidal particles dispersed in polar and nonpolar media. Langmuir 23(2):504–508

    Article  CAS  PubMed  Google Scholar 

  28. Okada A, Sasaki R, Matsumoto Y, Takeisi M, Saito T, Toh K, Usami N, Suemasu T (2011) Formation of poly-Si layers on AZO/SiO2 substrates and anti-reflection coating with AZO films for BaSi2 solar cells. Phys Procedia 11:31–34

    Article  CAS  Google Scholar 

  29. Chang H, Xie J, Zhao B, Liu B, Xu S, Ren N, Xie X, Huang L, Huang W (2015) Rare earth ion-doped upconversion nanocrystals: synthesis and surface modification. Nanomaterials 5(1):1–25

    Article  CAS  Google Scholar 

  30. Akindoyo JO, Beg MD, Ghazali S, Islam M, Jeyaratnam N, Yuvaraj A (2016) Polyurethane types, synthesis, and applications–a review. RSC Adv 6(115):114453–114482

    Article  CAS  Google Scholar 

  31. Liao Y, Wu X, Wang Z, Yue R, Liu G, Chen Y (2012) Composite thin film of silica hollow spheres and waterborne polyurethane: Excellent thermal insulation and light transmission performances. Mater Chem Phys 133(2–3):642–648

    Article  CAS  Google Scholar 

  32. Beck C, Härtl W, Hempelmann R (1999) Covalent surface functionalization and self-organization of silica nanoparticles. Angew Chem Int Ed 38(9):1297–1300

    Article  CAS  Google Scholar 

  33. Adnan MM, Dalod AR, Balci MH, Glaum J, Einarsrud M-A(2018) In situ synthesis of hybrid inorganic–polymer nanocomposites. Polymers 10(10):1129

    Article  PubMed Central  CAS  Google Scholar 

  34. Lin J, Wu X, Zheng C, Zhang P, Huang B, Guo N, Jin L (2014) Synthesis and properties of epoxy-polyurethane/silica nanocomposites by a novel sol method and in-situ solution polymerization route. Appl Surf Sci 303:67–75. https://doi.org/10.1016/j.apsusc.2014.02.075

    Article  CAS  Google Scholar 

  35. Sun D, Kang S, Liu C, Lu Q, Cui L, Hu B (2016) Effect of zeta potential and particle size on the stability of SiO2 nanospheres as the carrier for ultrasound imaging contrast agents. Int J Electrochem Sci 11(10):8520–8529

    Article  CAS  Google Scholar 

  36. Obaid M, Tolba GM, Motlak M, Fadali OA, Khalil KA, Almajid AA, Kim B, Barakat NA (2015) Effective polysulfone-amorphous SiO2 NPs electrospun nanofiber membrane for high flux oil/water separation. Chem Eng J 279:631–638

    Article  CAS  Google Scholar 

  37. Samitier J, Marco S, Ruiz O, Morante JR, Esteve-Tinto J, Bausells J (1992) Analysis by FT-IR spectroscopy of SiO2-polycrystalline structures used in micromechanics: Stress measurements. Sens Actuator A Phys 32(1):347–353. https://doi.org/10.1016/0924-4247(92)80010-Z

    Article  Google Scholar 

  38. Shokri B, Firouzjah MA, Hosseini SI (2009) FTIR analysis of silicon dioxide thin film deposited by metal organic-based PECVD. In: Proceedings of 19th international symposium on plasma chemistry society, Bochum, Germany 2631:26–31

  39. Tilkin RG, Colle X, Finol AA, Régibeau N, Mahy JG, Grandfils C, Lambert SD (2020) Protein encapsulation in functionalized sol-gel silica: Effect of the encapsulation method on the release kinetics and the activity. Microporous Mesoporous Mater 308:110502

  40. Lebrun JM, Jha SK, Naik KS, Seymour KC, Kriven WM, Raj R (2016) The change of X-ray diffraction peak width during in situ conventional sintering of nanoscale powders. J Am Ceram Soc 99(3):765–768

    Article  CAS  Google Scholar 

  41. Hossain MK, Mortuza A, Sen S, Basher M, Ashraf M, Tayyaba S, Mia M, Uddin MJ (2018) A comparative study on the influence of pure anatase and Degussa-P25 TiO2 nanomaterials on the structural and optical properties of dye-sensitized solar cell (DSSC) photoanode. Optik 171:507–516

    Article  CAS  Google Scholar 

  42. Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank JF, Heurtaux D, Clayette P, Kreuz C (2010) Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater 9(2):172–178

    Article  CAS  PubMed  Google Scholar 

  43. Zulfiqar U, Subhani T, Husain SW (2016) Synthesis of silica nanoparticles from sodium silicate under alkaline conditions. J Sol-Gel Sci Technol 77(3):753–758

    Article  CAS  Google Scholar 

  44. Venkatesan R, Rajeswari N (2019) Preparation, mechanical and antimicrobial properties of SiO2/ Poly(butylene adipate-co-terephthalate) films for active food packaging. Silicon 11(5):2233–2239. https://doi.org/10.1007/s12633-015-9402-8

    Article  CAS  Google Scholar 

  45. Li ZC, Fan HT, Sun T (2011) Application of imprinted functionalized silica gel sorbent for selective removal of cadmium (II) from industrial wastewaters. In: Advanced Materials Research. Trans Tech Publ, Freienbac, pp 441-444

  46. Mousavi A, Roghani-Mamaqani H, Salami-Kalajahi M, Shahi S, Abdollahi A (2018) Modification of graphene with silica nanoparticles for use in hybrid network formation from epoxy, novolac, and epoxidized novolac resins by sol-gel method: Investigation of thermal properties. Express Polym Lett 12(3):187–202

    Article  CAS  Google Scholar 

  47. Lin J, Wu X, Zheng C, Zhang P, Li Q, Wang W, Yang Z (2014) A novolac epoxy resin modified polyurethane acylates polymer grafted network with enhanced thermal and mechanical properties. J Polym Res 21(6):435

    Article  CAS  Google Scholar 

  48. Liu H, Wang H, Zhuang C, Liu Y, Yin J (2013) Preparation of EA/PU IPN grouting material and its performances research. Journal of Central South University (Science and Technology) 44 (8):3129–3136

  49. Joo J, Kim HS, Kim JT, Yoo HJ, Lee JR, Cheong IW (2012) Synthesis and characterization of epoxy silane-modifiedsilica/polyurethane-urea nanocomposite films. Korean Chem Eng Res 50(2):371–378

    Article  CAS  Google Scholar 

  50. Xavier JR (2020) Improvement of mechanical and anticorrosion coating properties in conducting polymer poly(Propyl Methacrylate) embedded with Silane functionalized silica nanoparticles. Silicon. https://doi.org/10.1007/s12633-020-00679-9

  51. Elnaggar EM, Elsokkary TM, Shohide MA, El-Sabbagh BA, Abdel-Gawwad HA (2019) Surface protection of concrete by the new protective coating. Constr Build Mater 220:245–252

    Article  CAS  Google Scholar 

  52. Li S, Ng YH, Lau HC, Torsæter O, Stubbs LP (2020) Experimental investigation of stability of silica nanoparticles at reservoir conditions for enhanced oil-recovery applications. Nanomaterials 10(8):1522

  53. Chattopadhyay DK, Webster DC (2009) Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 34(10):1068–1133

    Article  CAS  Google Scholar 

  54. Gao X, Zhu Y, Zhao X, Wang Z, An D, Ma Y, Guan S, Du Y, Zhou B (2011) Synthesis and characterization of polyurethane/SiO2 nanocomposites. Appl Surf Sci 257(10):4719–4724. https://doi.org/10.1016/j.apsusc.2010.12.138

    Article  CAS  Google Scholar 

  55. Yeganeh H, Shamekhi MA (2004) Poly(urethane-imide-imide), a new generation of thermoplastic polyurethane elastomers with enhanced thermal stability. Polymer 45(2):359–365. https://doi.org/10.1016/j.polymer.2003.11.006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The technical support of this project has been provided by Payame Noor University of Mashhad and Mashhad University of Medical Sciences based on the thesis of Ms. M. Velayati.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by Mahin. Velayati, Zahra Sabouri, Abdolhossein Masoudi, Asma Mostafapour, Mehrdad Khatami, and Majid Darroudi. The first draft of the manuscript was written by Mahin. Velayati and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. Compliance with ethical standards.

Corresponding author

Correspondence to Majid Darroudi.

Ethics declarations

Compliance with Ethical Standards

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

I, the undersigned, give my consent for the publication of identifiable details, which can include a photograph(s) and/ or case history and/or details within the text (“Material”) to be published in the above Journal and Article.

Conflict of Interest

Not applicable.

Disclosure of Potential Conflicts of interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velayati, M., Sabouri, Z., Masoudi, A. et al. Thermal Stability Investigation of Synthesized Epoxy-Polyurethane/Silica Nanocomposites. Silicon 14, 7541–7554 (2022). https://doi.org/10.1007/s12633-021-01467-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01467-9

Keywords

Navigation