Skip to main content
Log in

Corrosion Effects on High‐cycle Fatigue Lifetime and Fracture Behavior for Heat‐treated Aluminum‐matrix Nano‐clay‐composite Compared to Piston Aluminum Alloy

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this research, the corrosion effect has been investigated on the high-cycle fatigue lifetime and the fracture behavior for the heat-treated aluminum-matrix nano-clay-composite and piston aluminum alloys. For this objective, after fabricating stir-casted nano-clay-composite, standard samples were machined and rotary bending fatigue tests were performed. To study the corrosion effect, some specimens were corroded in the 0.00235 % H2SO4 solution after 200 h and then, they were tested under cyclic bending loading. Due to increase in the hardness by adding nano-clay particles and the heat treatment, higher fatigue strength occurred, compared to the base material. Moreover, nano-clay particles shortened the fatigue lifetime; however, this effect was less in the corrosion-fatigue lifetime. In addition, the failure mechanism was the brittle fracture behavior due to the observation of quasi-cleavage and cleavage marks. Experimental data illustrated that the H2SO4 environment effect was effectively significant on the bending fatigue lifetime of the piston aluminum alloy, due to corrosion pits and surface defects. This degradation in material properties was demonstrated as a decreasing shift in both low-cycle and high-cycle fatigue regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available based on the request from the corresponding author. The experimental data are not publicly available due to restrictions and the privacy of research participants.

References

  1. Beiki H, Esfahany MN, Etesami N (2013) Turbulent mass transfer of Al2O3 and TiO2 electrolyte nanofluids in circular tube. Microfluid Nanofluid 15:501–508

    Article  CAS  Google Scholar 

  2. Azadi M, Rezanezhad S, Zolfaghari M, Azadi M (2020) Effect of simultaneous use of silica nanoparticles and heat treatment on high-cycle bending fatigue lifetime in piston aluminum alloy. Modares Mech Eng 20(6):1463–1473

    Google Scholar 

  3. Azadi M, Safarloo S, Loghman F, Rasouli R (2018) Microstructural and thermal properties of piston aluminum alloy reinforced by nano-particles, AIP Conference Proceedings (1920) 020027

  4. Azadi M, Zolfaghari M, Rezanezhad S, Azadi M (2018) Preparation of various aluminum matrix composites reinforcing by nanoparticles with different dispersion methods, Proceedings of Iran International Aluminum Conference, Tehran, Iran

  5. Azadi M, Zolfaghari M, Rezanezhad S, Azadi M (2018) Effects of SiO2 nano-particles on tribological and mechanical properties of aluminum matrix composites by different dispersion methods. Appl Phys A 124(5):377

    Article  CAS  Google Scholar 

  6. Ueno A, Miyakawa S, Yamada K, Sugiyama T (2010) Fatigue behavior of die casting aluminum alloys in air and vacuum. Procedia Eng 2:1937–1943

    Article  Google Scholar 

  7. Teranishia M, Kuwazuru O, Gennai Sh, Kobayashi M, Toda H (2016) Three-dimensional stress and strain around real shape Si particles in cast aluminum alloy under cyclic loading. Mater Sci Eng A 678:273–285

    Article  CAS  Google Scholar 

  8. Azadi M (2017) Cyclic thermo-mechanical stress, strain and continuum damage behaviors in light alloys during fatigue lifetime considering heat treatment effect. Int J Fatigue 99:303–314

    Article  CAS  Google Scholar 

  9. Moffat AJ, Barnes S, Mellor BG, Reed PAS (2005) The effect of silicon content on long crack fatigue behavior of aluminum-silicon piston alloys at elevated temperature. Int J Fatigue 27:1564–1570

    Article  CAS  Google Scholar 

  10. Mbuya TO, Sinclair I, Moffat AJ, Reed PAS (2012) Micro-mechanisms of fatigue crack growth in cast aluminum piston alloys. Int J Fatigue 42:227–237

    Article  CAS  Google Scholar 

  11. Mbuya TO, Sinclair I, Moffat AJ, Reed PAS (2011) Analysis of fatigue crack initiation and S-N response of model cast aluminum piston alloys. Mater Sci Eng A 528:7331–7340

    Article  CAS  Google Scholar 

  12. Nicoletto G, Riva E, Di Filippo A (2014) High temperature fatigue behavior of eutectic Al-Si alloys used for piston production. Procedia Eng 74:157–160

    Article  CAS  Google Scholar 

  13. Mbuya TO, Reed PAS (2014) Micro mechanisms of short fatigue crack growth in an Al-Si piston alloy. Mater Sci Eng A 612:302–309

    Article  CAS  Google Scholar 

  14. Wang M, Pang JC, Li SX, Zhang ZF (2017) Low-cycle fatigue properties and life prediction of Al-Si piston alloy at elevated temperature. Mater Sci Eng A 704:480–492

    Article  CAS  Google Scholar 

  15. Rezanezhad S, Azadi M, Azadi M (2019) Influence of heat treatment on high–cycle fatigue and fracture behaviors of piston aluminum alloy under fully–reversed cyclic bending. Met Mater Int 27(5):860–870. https://doi.org/10.1007/s12540-019-00498-7

  16. Myriounis D, Matikas T, Hasan S (2020) Fatigue behavior of SiC particulate-reinforced A359 aluminum matrix composites. Strain 48:333–341. https://doi.org/10.1177/0954406220969731

  17. Divagar S, Vigneshwar M, Selvamani S (2016) Impacts of nano particles on fatigue strength of aluminum-based metal matrix composites for aerospace. Mater Today Proc 3:3734–3739

  18. Raju PRM, Rajesh S, Raju KSR, Raju VR (2017) Evaluation of fatigue life of Al2024/Al2O3 particulate nano composite fabricated using stir casting technique. Mater Today Proc 4:3188–3196

  19. Azadi M, Bahmanabadi H, Gruen F, Winter G (2020) Evaluation of tensile and low-cycle fatigue properties at elevated temperatures in piston aluminum-silicon alloys with and without nano-clay particles and heat treatment. Mater Sci Eng A 788:139497

    Article  CAS  Google Scholar 

  20. Chlistovsky RM, Heffernan PJ, DuQuesnay DL (2007) Corrosion-fatigue behaviour of 7075-T651 aluminum alloy subjected to periodic overloads. Int J Fatigue 29:1941–1949

    Article  CAS  Google Scholar 

  21. Dorman SEG, Lee Y (2011) Effect of chromate primer on hr in aluminum alloy 7075. Procedia Eng 10:1220–1225

    Article  CAS  Google Scholar 

  22. Mhaede M (2012) Influence of surface treatments on surface layer properties, fatigue and corrosion fatigue performance of AA7075 T73. Mater Des 41:61–66

    Article  CAS  Google Scholar 

  23. Meng X, Lin Z, Wang F (2013) Investigation on corrosion fatigue crack growth rate in 7075 aluminum alloy. Mater Des 51:683–687

    Article  CAS  Google Scholar 

  24. Abdulstaar M, Mhaede M, Wollmann M, Wagner L (2014) Investigating the effects of bulk and surface severe plastic deformation on the fatigue, corrosion behavior and corrosion fatigue of AA5083. Surf Coat Technol 254:244

    Article  CAS  Google Scholar 

  25. Laurino A, Andrieu E, Harouard JP, Odemer G, Salabura JC, Blanc C (2014) Effect of corrosion on the fatigue life and fracture mechanisms of 6101 aluminum alloy wires for car manufacturing applications. Mater Des 53:236–249

    Article  CAS  Google Scholar 

  26. Chemin A, Spinelli D, Bose Filho W, Ruchert C (2015) Corrosion fatigue crack growth of 7475 T7351 aluminum alloy under flight simulation loading. Procedia Eng 101:85–92

    Article  CAS  Google Scholar 

  27. Guerin M, Alexis J, Andrieu E, Blanc C, Odemer G (2015) Corrosion-fatigue lifetime of Aluminum-Copper-Lithium alloy 2050 in chloride solution. Mater Des 87:681–669

    Article  CAS  Google Scholar 

  28. Hu P, Meng Q, Hu W, Shen F, Zhan Z, Sun L (2016) A continuum damage mechanics approach coupled with an improved pit evolution model for the corrosion fatigue of aluminum alloy. Corros Sci 113:78–90

    Article  CAS  Google Scholar 

  29. Wang CQ, Xiong JJ, Shenoi RA, Liu MD, Liu JZ (2016) A modified model to depict corrosion fatigue crack growth behavior for evaluating residual lives of aluminum alloys. Int J Fatigue 83:280–287

    Article  CAS  Google Scholar 

  30. Priet B, Odemer G, Blanc C, Giffard K, Arurault L (2016) Effect of new sealing treatments on corrosion fatigue lifetime of anodized 2024 aluminum alloy. Surf Coat Technol 307(A):206–219

    Article  CAS  Google Scholar 

  31. Chen Y, Zhou J, Liu Ch, Wang F (2018) Effect of pre-deformation on the pre-corrosion multiaxial fatigue behaviors of 2024-T4 aluminum alloy. Int J Fatigue 108:35–46

    Article  CAS  Google Scholar 

  32. Leon A, Aghio E (2017) Effect of surface roughness on corrosion fatigue performance of AlSi10Mg alloy produced by Selective Laser Melting (SLM). Mater Charact 131:188–194

    Article  CAS  Google Scholar 

  33. Chen Y, Liu Ch, Zhou J, Wang X (2017) Multiaxial fatigue behaviors of 2024-T4 aluminum alloy under different corrosion conditions. Int J Fatigue 98:269–278

    Article  CAS  Google Scholar 

  34. Arunachalam SR, Dorman SEG, Buckleya RT, Conrad NA, Fawaz SA (2018) Effect of electrical discharge machining on corrosion and corrosion fatigue behavior of aluminum alloys. Int J Fatigue 111:44–53

    Article  CAS  Google Scholar 

  35. Yea Z, Liu D, Zhang X, Wu Z, Long F (2019) Influence of combined shot peening and PEO treatment on corrosion fatigue behavior of 7A85 aluminum alloy. Appl Surf Sci 486:72–79

    Article  CAS  Google Scholar 

  36. Chen Y, Liu Ch, Zhou J, Wang F (2019) Effect of alternate corrosion factors on multiaxial low-cycle fatigue life of 2024-T4 aluminum alloy. J Alloy Compd 772:1–14

    Article  CAS  Google Scholar 

  37. Rodriguez RI, Jordon JB, Allison PG, Rushing T, Garcia L (2019) Corrosion effects on fatigue behavior of dissimilar friction stir welding of high-strength aluminum alloys. Mater Sci Eng A 742:255–268

    Article  CAS  Google Scholar 

  38. Mishra RK (2020) Study the effect of pre-corrosion on mechanical properties and fatigue life of aluminum alloy 8011. Mater Today Proc 25(4):602–609

  39. Huang Y, Ye X, Hu B, Chen L (2016) Equivalent crack size model for pre-corrosion fatigue life prediction of aluminum alloy 7075-T6. Int J Fatigue 88:217–226

    Article  CAS  Google Scholar 

  40. El-Shamy AM, Shehata MF, Metwally HIM, Melegy A (2018) Corrosion and corrosion inhibition of steel pipelines in montmorillonitic soil filling material. Silicon 10(6):2809–2815

    Article  CAS  Google Scholar 

  41. El-Shamy AM, Shehata MF, Ismail AIM (2015) Effect of moisture contents of bentonitic clay on the corrosion behavior of steel pipelines. Appl Clay Sci 114:461–466

    Article  CAS  Google Scholar 

  42. Ismail AIM, El-Shamy AM (2009) Engineering behavior of soil materials on the corrosion of mild steel. Appl Clay Sci 42(3–4):356–362

    Article  CAS  Google Scholar 

  43. Eessaa AK, El-Shamy AM, Reda Y (2018) Fabrication of commercial nano-porous alumina by low voltage anodizing. Egypt J Chem 61(1):175–185

    Google Scholar 

  44. Beiki H, Mosavi SJ (2020) Silver nano-particles-polyurea composite coatings on ASTM A194 steel: A study of corrosion behavior in chloride medium. Journal of Bio- Tribo-Corrosion 6:66

    Article  Google Scholar 

  45. Fard MM, Beiki H (2016) Experimental investigation of benzoic acid diffusion coefficient in γ-Al2O3 nanofluids at different temperatures. Heat Mass Transf 52:2203–2211

    Article  CAS  Google Scholar 

  46. Fard MM, Beiki H (2017) Experimental measurement of solid solutes solubility in nanofluids. Heat Mass Transf 53:1257–1263

    Article  CAS  Google Scholar 

  47. Azadi M, Aroo H (2020) Temperature effect on creep and fracture behaviors of nano-SiO2-composite and AlSi12Cu3Ni2MgFe aluminum alloy. Int J Eng 33(8):1579–1589

    CAS  Google Scholar 

  48. Juang SH, Fan LJ, Yang HPO (2015) Influence of preheating temperatures and adding rates on distributions of fly ash in aluminum matrix composites prepared by stir casting. Int J Precis Eng Manuf 16(7):1321–1327

    Article  Google Scholar 

  49. Zolfaghari M, Azadi M, Azadi M (2020) Characterization of high-cycle bending fatigue behaviors for piston aluminum matrix SiO2 nano-composites in comparison with aluminum-silicon alloys. Int J Metalcast 15:152–168

    Article  CAS  Google Scholar 

  50. Aroo H, Parast MSA, Azadi M, Azadi M (2020) Investigation of effects of nano-particles, heat treatment process and acid amount on corrosion rate in piston aluminum alloy using regression analysis, 11th International Conference on Internal Combustion Engines and Oil, Tehran, Iran (in Persian)

  51. Sasaki K, Takahashi T (2006) Low cycle thermal fatigue and microstructural change of AC2B-T6 aluminum alloy. Int J Fatigue 28(3):203–210

    Article  CAS  Google Scholar 

  52. (2010) Metallic materials-rotating bar bending fatigue testing, Standard No. ISO-1143, ISO International Standard

  53. Khameneh MJ, Azadi M (2018) Evaluation of high-cycle bending fatigue and fracture behaviors in EN-GJS700-2 ductile cast iron of crankshafts. Eng Fail Anal 85:189–200

    Article  CAS  Google Scholar 

  54. Azadi M, Aroo H (2019) Creep properties and failure mechanisms of aluminum alloy and aluminum matrix silicon oxide nano-composite under working conditions in engine pistons. Mater Res Express 6:115020

    Article  CAS  Google Scholar 

  55. Zainon F, Rafezi Ahmad K, Daud R (2015) Effect of heat treatment on microstructure, hardness and wear of aluminum alloy 332. Appl Mech Mater 786:18–22

    Article  Google Scholar 

  56. Han L, Sui Y, Wang Q, Wang K, Jiang Y (2017) Effects of Nd on microstructure and mechanical properties of cast Al-Si-Cu-Ni-Mg piston alloys. J Alloy Compd 695:1566–1572

    Article  CAS  Google Scholar 

  57. Humbertjean A, Beck T (2013) Effect of the casting process on microstructure and lifetime of the Al-piston-alloy AlSi12Cu4Ni3 under thermo-mechanical fatigue with superimposed high-cycle fatigue loading. Int J Fatigue 53:67–74

    Article  CAS  Google Scholar 

  58. Mollaei M, Azadi M, Tavakoli H (2018) A parametric study on mechanical properties of aluminum-silicon/SiO2 nano-composites by a solid-liquid phase processing. Appl Phys A 124:504

    Article  CAS  Google Scholar 

  59. Issa HK, Taherizadeh A, Maleki A, Ghaei (2017) Development of an aluminum/amorphous nano-SiO2 composite using powder metallurgy and hot extrusion processes. Ceram Int 43:14582–14592

    Article  CAS  Google Scholar 

  60. Vander Voort GF (2004) Metallography and microstructures, 6th edn. ASM International, Novelty

  61. Li Y, Yang Y, Wu Y, Wang L, Liu X (2010) Quantitative comparison of three Ni-containing phases to the elevated-temperature properties of Al-Si piston alloys. Mater Sci Eng A 527(26):7132–7137

    Article  CAS  Google Scholar 

  62. Sharifi MJ, Azadi M, Azadi M (2020) Fabrication of heat-treated nano-clay-composite for improving high-cycle fatigue properties of AlSiCu aluminum alloy under stress-controlled fully-reversed bending loads, Part C. J Mech Eng Sci. https://doi.org/10.1177/0954406220969731

  63. Liu J, Zhang Q, Zue Z, Xiong Y, Ren F, Volinsky A (2013) Microstructure evolution of Al-12Si-CuNiMg alloy under high temperature low cycle fatigue. Mater Sci Eng A 574:186–190

    Article  CAS  Google Scholar 

  64. Zhang G, Zhang J, Li B, Cai W (2013) Double-stage hardening behavior and fracture characteristics of a heavily alloyed Al-Si piston alloy during low-cycle fatigue loading. Mater Sci Eng A 561:26–33

    Article  CAS  Google Scholar 

  65. Arab M, Azadi M, Mirzaee O (2020) Effects of manufacturing parameters on the corrosion behavior of Al-B4C nanocomposites. Mater Chem Phys 253:123259

    Article  CAS  Google Scholar 

  66. Selamat MSB (1996) Corrosion behavior of SiCp/6061 Al metal matrix composites in chloride solutions. Adv Perform Mater 3:183–204

    Article  CAS  Google Scholar 

  67. Li Z, Limodin N, Tandjaoui A, Quaegebeur P, Witz JF, Balloy D (2017) Influence of Fe content on the damage mechanism in A319 aluminum alloy: Tensile tests and digital image correlation. Eng Fract Mech 183:94–108

    Article  Google Scholar 

Download references

Funding

Authors tend to have special thanks to Motorsazi Pooya Neyestanak (MPN) Company, for supporting authors by providing initial materials, in addition to the financial support.

Author information

Authors and Affiliations

Authors

Contributions

Hanieh Aroo: Software/ Formal Analysis/ Investigation/ Data Curation/ Writing - Original Draft / Mohammad Azadi: Conceptualization/ Methodology/ Validation/ Investigation/ Resources/ Writing - Review & Editing/ Visualization/ Supervision/ Project Administration/ Funding Acquisition / Mahboobeh Azadi: Methodology/ Validation/ Investigation/ Resources/ Writing - Original Draft.

Corresponding author

Correspondence to Mohammad Azadi.

Ethics declarations

Conflict of Interest

For this research, there is no conflict of interest for all authors.

Human and Animal Rights

This article does not contain any studies with human or animal subjects. 

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aroo, H., Azadi, M. & Azadi, M. Corrosion Effects on High‐cycle Fatigue Lifetime and Fracture Behavior for Heat‐treated Aluminum‐matrix Nano‐clay‐composite Compared to Piston Aluminum Alloy. Silicon 14, 3749–3763 (2022). https://doi.org/10.1007/s12633-021-01129-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01129-w

Keywords

Navigation