Skip to main content
Log in

Machining, Characterization and Optimization: A Novel Approach for Machining Channels on Silicon Wafer Using Tailor-Made Micro Abrasive Jet Machining

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Literature reveals that machining a silicon wafer is very arduous due to its high brittle nature and low fracture toughness. Researchers have attempted to machine features on a silicon wafer using both conventional and non-conventional processes and both have their merits & demerits. Abrasive jet machining (AJM) is one of the efficient non-conventional machining methods for machining hard and brittle materials. Removal of material occurs by impact erosion and is free from Heat Affected Zone (HAZ) and resolidification. These advantages make AJM a potential process for machining silicon wafers. Therefore an attempt has been made to machine channels on silicon wafers using a Tailor-made AJM setup. The process parameters selected for machining channels on a silicon wafer are air pressure, Feed rate (FR), and Standoff distance (SOD). The output responses considered for characterization are material removal rate (MRR), channel characteristics like width, depth, and Surface Roughness (Ra). The machined Channels are found to have sufficient depth and good surface finish and are free from heat affected zone and resolidification. X-Ray Diffraction (XRD) analysis has indicated the presence of embedded SiC particles in the channel. GRA method is utilized to achieve an optimal condition of higher depth and MRR, smaller width, and Ra. Also, the significance and percentage contribution of process parameters are found out through ANOVA and obtained results are presented in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Singh M, Singh S, Kumar S (2019) Experimental investigation for generation of micro-holes on silicon wafer using electrochemical discharge machining process. Silicon 12:1–7. https://doi.org/10.1007/s12633-019-00273-8

    Article  CAS  Google Scholar 

  2. Beetz CP, Boerstler R, Steinbeck J, Lemieux B, Winn D R (2000) Silicon-micromachined microchannel plates. Nuclear instruments and methods in physics research section a: accelerators, spectrometers, detectors and associated equipment 442(1-3): 443-451. https://doi.org/10.1016/S0168-9002(99)01271-1

  3. Kovacs GT, Maluf NI, Petersen KE (1998) Bulk micromachining of silicon. Proc IEEE 86(8):1536–1551. https://doi.org/10.1109/5.704259

    Article  CAS  Google Scholar 

  4. Kaminsky G (1985) Micromachining of silicon mechanical structures. J Vac Sci Technol B: Microelectron Process Phenom 3(4):1015–1024. https://doi.org/10.1116/1.583089

    Article  CAS  Google Scholar 

  5. Hossinger A (2000) Simulation of ion implantation for ULSI technology, Tech. Univ. Vienna, Vienna, Austria. https://inis.iaea.org/search/search.aspx?orig_q=RN:33039479

  6. Kam DH, Mazumder J (2008) Three-dimensional biomimetic microchannel network by laser direct writing. J Laser Appl 20(3):185–191. https://doi.org/10.2351/1.2955485

    Article  CAS  Google Scholar 

  7. Choi DH, Lee JR, Kang NR, Je TJ, Kim JY, Jeon EC (2017) Study on ductile mode machining of single-crystal silicon by mechanical machining. Int J Mach Tools Manuf 113:1–9. https://doi.org/10.1016/j.ijmachtools.2016.10.006

    Article  Google Scholar 

  8. Arif M, Rahman M, San WY (2012) An experimental investigation into micro ball end-milling of silicon. J Manuf Process 14(1):52–61. https://doi.org/10.1016/j.jmapro.2011.09.004

    Article  Google Scholar 

  9. Leone C, Genna S (2018) Heat affected zone extension in pulsed Nd: YAG laser cutting of CFRP. Compos Part B Eng 140:174–182. https://doi.org/10.1016/j.compositesb.2017.12.028

    Article  Google Scholar 

  10. Wee LM, Ng EYK, Prathama AH, Zheng H (2011) Micro-machining of silicon wafer in air and underwater. Opt Laser Technol 43(1):62–71. https://doi.org/10.1016/j.optlastec.2010.05.005

    Article  CAS  Google Scholar 

  11. Kam DH, Shah L, Mazumder J (2011) Femtosecond laser machining of multi-depth microchannel networks onto silicon. J Micromech Microeng 21(4):045027. https://doi.org/10.1088/0960-1317/21/4/045027

    Article  CAS  Google Scholar 

  12. Grojo D, Mouskeftaras A, Delaporte P, Lei S (2015) Limitations to laser machining of silicon using femtosecond micro-Bessel beams in the infrared. J Appl Phys 117(15):153105. https://doi.org/10.1063/1.4918669

    Article  CAS  Google Scholar 

  13. Raju L, Hiremath SS (2020) Machining and characterization of micro-channels generated on phosphor bronze using μ-EDM. J Adv Manuf Syst 19(01):87–106. https://doi.org/10.1142/S0219686720500055

    Article  Google Scholar 

  14. Bhiradi I, Raju L, Hiremath SS (2020) Adaptive neuro-fuzzy inference system (ANFIS): modelling, analysis, and optimisation of process parameters in the micro-EDM process. Adv Mater Process Technol 6(1):133–145. https://doi.org/10.1080/2374068X.2019.1709309

    Article  Google Scholar 

  15. Bindu Madhavi J, Hiremath SS (2019) Machining of micro-holes on borosilicate glass using micro-electro chemical discharge machining (μ-ECDM) and parametric optimisation. Adv Mater Process Technol 5(3):542–557. https://doi.org/10.1080/2374068X.2019.1636187

    Article  Google Scholar 

  16. Madhavi JB, Hiremath SS (2019) Machining and characterization of channels and textures on quartz glass using μ-ECDM process. Silicon 11(6):2919–2931. https://doi.org/10.1007/s12633-019-0083-6

    Article  CAS  Google Scholar 

  17. Daud ND, AbuZaiter A, Leow PL, Ali MSM (2018) The effects of the silicon wafer resistivity on the performance of microelectrical discharge machining. Int J Adv Manuf Technol 95(1–4):257–266. https://doi.org/10.1007/s00170-017-1190-4

    Article  Google Scholar 

  18. Dongre G, Zaware S, Dabade U, Joshi SS (2015) Multi-objective optimization for silicon wafer slicing using wire-EDM process. Mater Sci Semicond Process 39:793–806. https://doi.org/10.1016/j.mssp.2015.06.050

    Article  CAS  Google Scholar 

  19. Raj S ON, Prabhu S (2020) Investigation on slicing behavior of single crystal silicon wafer in AWJM and influence of micro dimple textured surface for solar applications. Silicon 1-19. https://doi.org/10.1007/s12633-020-00766-x

  20. Sreehari D, Sharma AK (2018) On form accuracy and surface roughness in micro-ultrasonic machining of silicon microchannels. Precis Eng 53:300–309. https://doi.org/10.1016/j.precisioneng.2018.04.014

    Article  Google Scholar 

  21. Kruusing A, Leppaevuori S, Uusimaki A, Uusimaki M (1999) Rapid prototyping of silicon structures by aid of laser and abrasive-jet machining. In Design, Test, and Microfabrication of MEMS and MOEMS International Society for Optics and Photonics 3680: 870–878. https://doi.org/10.1117/12.341285

  22. Ke JH, Tsai FC, Hung JC, Yang TY, Yan BH (2011) Scrap wafer regeneration by precise abrasive jet machining with novel composite abrasive for design of experiments. Proc Inst Mech Eng B J Eng Manuf 225(6):881–890. https://doi.org/10.1177/09544054JEM2110

    Article  CAS  Google Scholar 

  23. Verma AP, Lal GK (1984) An experimental study of abrasive jet machining. Int J Mach Tool Des Res 24(1):19–29. https://doi.org/10.1016/0020-7357(84)90043-X

    Article  Google Scholar 

  24. Venkatesh VC (1984) Parametric studies on abrasive jet machining. CIRP Ann 33(1):109–112. https://doi.org/10.1016/S0007-8506(07)61390-0

    Article  Google Scholar 

  25. Sahu S K, Thrinadh J, Datta S (2021) Parametric studies on SiC-abrasive jet assisted machining of alumina ceramics. Materials Today: Proceedings In press https://doi.org/10.1016/j.matpr.2020.11.823

  26. Tomy AS, Hiremath S (2019) Machinability and characterisation of machined hole on quartz using developed μ-AJM setup. Adv Mater Process Technol 5(2):242–257. https://doi.org/10.1080/2374068X.2018.1564868

    Article  Google Scholar 

  27. Hopcroft MA, Nix WD, Kenny TW (2010) What is the Young's Modulus of silicon. J Microelectromech Syst 19(2):229–238. https://doi.org/10.1109/JMEMS.2009.2039697

    Article  CAS  Google Scholar 

  28. Wang J, Moridi A, Mathew P (2011) Micro-grooving on quartz crystals by an abrasive air jet. Proc Inst Mech Eng C J Mech Eng Sci 225(9):2161–2173. https://doi.org/10.1177/0954406211410260

    Article  CAS  Google Scholar 

  29. Hu Y, Dai Q, Huang W, Wang X (2021) Characteristics of multiphase jet machining: a comparison with the absence of water. J Mater Process Technol 291:117050. https://doi.org/10.1016/j.jmatprotec.2021.117050

    Article  CAS  Google Scholar 

  30. Park DS, Cho MW, Lee H, Cho WS (2004) Micro-grooving of glass using micro-abrasive jet machining. J Mater Process Technol 146(2):234–240

    Article  Google Scholar 

  31. Tomy A, Hiremath S S (2020) Machining and characterization of multidirectional hybrid silica glass Fiber reinforced composite laminates using abrasive jet machining. Silicon 1-14. https://doi.org/10.1007/s12633-020-00504-3

  32. Li H, Wang J, Kwok N, Nguyen T, Yeoh GH (2018) A study of the micro-hole geometry evolution on glass by abrasive air-jet micromachining. J Manuf Process 31:156–161. https://doi.org/10.1016/j.jmapro.2017.11.013

    Article  Google Scholar 

  33. Achtsnick M, Geelhoed PF, Hoogstrate AM, Karpuschewski B (2005) Modelling and evaluation of the micro abrasive blasting process. Wear 259(1–6):84–94. https://doi.org/10.1016/j.wear.2005.01.045

    Article  CAS  Google Scholar 

  34. Kumar A, Hiremath SS (2017) Investigation on micro-abrasive jet machining: machinability study. Am J Mater Sci Appl 5(2):9–15 http://www.openscienceonline.com/journal/ajmsa

    Google Scholar 

  35. Finnie I (1960) Erosion of surfaces by solid particles. Wear 3(2):87–103. https://doi.org/10.1016/0043-1648(60)90055-7

    Article  Google Scholar 

  36. Bhattacharyya B, Doloi B (2019) Modern Machining Technology: Advanced, Hybrid, Micro Machining and Super Finishing Technology. Academic Press, London

  37. Sadeghi H, Zolanvari A (2009) Characterization of annealed Ni/cu multilayers on Si (100). Armenian J Physics 2(4):302–306

    CAS  Google Scholar 

  38. Mujahid M, Friska I (2005) Influence of mechanical milling on the SiC particulate size in an Al-SiC composite. J Mater Eng Perform 14(1):69–74. https://doi.org/10.1361/10599490522284

    Article  CAS  Google Scholar 

  39. Tuan PV, Khiem TN, Huy PT (2017) Sol–gel synthesis and photoluminescence of SiO2–Si: Er3+ nanocomposite films. Mater Res Express 4(3):036205. https://doi.org/10.1088/2053-1591/aa65fc

    Article  CAS  Google Scholar 

  40. Qin D, Xia Y, Rogers JA, Jackman RJ, Zhao XM, Whitesides GM (1998) Micro fabrication, microstructures and microsystems. Microsyst Technol Chem Life Sci 194:1–20. https://doi.org/10.1007/3-540-69544-3_1

    Article  CAS  Google Scholar 

  41. Rao R V, Savsani V J (2012) Mechanical design optimization using advanced optimization techniques. Springer-Verlag, London. https://doi.org/10.1007/978-1-4471-2748-2

  42. Lin JL, Lin CL (2002) The use of the orthogonal array with grey relational analysis to optimize the electrical discharge machining process with multiple performance characteristics. Int J Mach Tools Manuf 42(2):237–244. https://doi.org/10.1016/S0890-6955(01)00107-9

    Article  Google Scholar 

  43. Antil P, Kumar Antil S, Prakash C, Krolczyk G, Pruncu C (2020) Multi-objective optimization of drilling parameters for orthopaedic implants. Meas Control 53(9–10):1902–1910. https://doi.org/10.1177/0020294020947126

    Article  Google Scholar 

  44. Antil P, Singh S, Singh PJ (2018) Taguchi’s methodology based electrochemical discharge machining of polymer matrix composites. Procedia Manufacturing 26:469–473. https://doi.org/10.1016/j.promfg.2018.07.055

    Article  Google Scholar 

  45. Kharb S S, Antil P, Singh S, Antil S K, Sihag P, Kumar A (2020) Machine learning-based erosion behavior of silicon carbide reinforced polymer composites. Silicon 1-7. https://doi.org/10.1007/s12633-020-00497-z

  46. Caydas U, Hascalık A (2008) Use of the grey relational analysis to determine optimum laser cutting parameters with multi-performance characteristics. Opt Laser Technol 40(7):987–994. https://doi.org/10.1016/j.optlastec.2008.01.004

    Article  Google Scholar 

  47. Lin CL (2004) Use of the Taguchi method and grey relational analysis to optimize turning operations with multiple performance characteristics. Mater Manuf Process 19(2):209–220. https://doi.org/10.1081/AMP-120029852

    Article  CAS  Google Scholar 

Download references

Availability of Data and Material

Not Applicable.

Code Availability

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

AnuTomy and Somashekhar S Hiremath contributed to the study, conception and design. Material preparation, data collection and analysis were performed by AnuTomy and Somashekhar S Hiremath. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Somashekhar S. Hiremath.

Ethics declarations

Conflicts of Interest/Competing Interests

Not Applicable.

Ethics Approval

Not Applicable.

Consent to Participate

Yes

Consent for Publication

Yes

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomy, A., Hiremath, S.S. Machining, Characterization and Optimization: A Novel Approach for Machining Channels on Silicon Wafer Using Tailor-Made Micro Abrasive Jet Machining. Silicon 14, 2317–2328 (2022). https://doi.org/10.1007/s12633-021-01036-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01036-0

Keywords

Navigation