Skip to main content
Log in

Machining and Characterization of Channels and Textures on Quartz Glass Using μ-ECDM Process

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Applications of various glass materials like sodalime, borosilicate and pyrex are growing in the field of micro-electro mechanical systems. Quartz glass composes of pure silicon dioxide which is well- known for its hardness and processing of it would widen the scope of its application in product miniaturization. Micro-Electro Chemical Discharge Machining (μ-ECDM) is a non-conventional hybrid technique which combines the features of Electro Chemical Machining (ECM) and Electro Discharge Machining (EDM). In the present paper, channels are machined using μ-ECDM on 4 mm thick quartz glass with 370 μm diameter stainless steel (SS) tool. Experiments are designed at various levels of voltage (V), electrolyte concentration (wt%C) and duty factor (%DF) for parametric study. Signal to Noise (S/N) ratio and Grey Relational Analysis (GRA) are used to optimize the process parameters to enhance responses individually and simultaneously. The obtained S/N ratio optimized parameters to maximize Material Removal Rate (MRR) are - 60 V, 30 wt%C, 60 %DF resulted in 753 μg/min, to minimize Tool Wear Rate (TWR) are – 40 V, 20 wt%C, 50 %DF resulted in 2.99 μg/min and to minimize width of the channel are- 40 V, 20 wt%C, 60 %DF resulted in 500 μm. The GRA optimized parameters are- 40 V, 20 wt%C and 50 %DF resulting in 81 μg/m of MRR, 2.99 μg/m of TWR and 557.6 μm of width with entropy technique- equal weightage. Further an attempt has been made to machine texture on the quartz surface which is still in its early stages of research. GRA optimized parameters as detailed above are used to machine channels and generate textures of 45° hatch, square hatch and 45° criss-cross hatch on quartz glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wallner JZ, Kunt KS, Obanionwu H, Oborny MC, Bergstrom PL, Zellers ET (2007) An integrated vapor source with a porous silicon wick. Phys Status Solidi 204:1449–1453. https://doi.org/10.1002/pssa.200674383

    Article  CAS  Google Scholar 

  2. Sandison ME, Zagnoni M, Abu-hantash M, Morgan H (2007) Micromachined glass apertures for artificial lipid bilayer formation in a microfluidic system. J Micromech Microeng 17:S189–S196. https://doi.org/10.1088/0960-1317/17/7/S17

    Article  CAS  Google Scholar 

  3. San H, Zhang H, Zhang Q, Yu Y, Chen X (2013) Silicon – glass-based single piezoresistive pressure sensors for harsh environment. J Micromech Microeng 23:075020. https://doi.org/10.1088/0960-1317/23/7/075020

    Article  CAS  Google Scholar 

  4. Isabella O, Moll F, Krč J, Zeman M (2010) Modulated surface textures using zinc-oxide films for solar cells applications. Phys Status Solidi Appl Mater Sci 207:642–646. https://doi.org/10.1002/pssa.200982828

    Article  CAS  Google Scholar 

  5. Cook NH, Foote GB, Jordan P, Kalyani BN (1973) Experimental studies in electro-machining. J Eng Ind 95:945–950. https://doi.org/10.1115/1.3438273

    Article  CAS  Google Scholar 

  6. Bhattacharyya B, Doloi BN, Sorkhel SK (1999) Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials. J Mater Process Tech 95:145–154. https://doi.org/10.1016/S0924-0136(99)00318-0

    Article  Google Scholar 

  7. Crichton IM, McGeough JA (1985) Studies of the discharge mechanisms in electrochemical arc machining. J Appl Electrochem 15:113–119. https://doi.org/10.1007/BF00617748

    Article  CAS  Google Scholar 

  8. Basak I, Ghosh A (1997) Mechanism of material removal in electroche machining: a theoretical model and experiment. J Mater Process Tech 71:350–359. https://doi.org/10.1016/S0924-0136(97)00097-6

    Article  Google Scholar 

  9. Wuthrich R, Fascio V, Viquerat D, Langen H (1999) In situ measurement and micromachining of glass. Int Symp MICROMECHATRONICS Hum Sci IEEE:185–191. https://doi.org/10.1109/MHS.1999.820004

  10. Behroozfar A, Razfar MR (2016) Experimental study of the tool Wear during the electrochemical discharge machining experimental study of the tool wear during the electrochemical discharge machining. Mater Manuf Process 31:574–580. https://doi.org/10.1080/10426914.2015.1004685

    Article  CAS  Google Scholar 

  11. Ranganayakulu J, Hiremath SS, Paul L (2011) Parametric analysis and a soft computing approach on material removal rate in electrochemical discharge machining. Int J Manuf Technol Manag 24:23–39. https://doi.org/10.1504/IJMTM.2011.046758

    Article  Google Scholar 

  12. Bindu Madhavi J, Hiremath SS (2016) Investigation on machining of holes and channels on borosilicate and Sodalime glass using μ -ECDM setup. Procedia Technol 25:1257–1264. https://doi.org/10.1016/j.protcy.2016.08.219

    Article  Google Scholar 

  13. Yan Z, Zhengyang X, Jun X, Di Z (2016) Effect of tube-electrode inner diameter on electrochemical discharge machining of nickel-based superalloy. Chinese J Aeronaut 29:1103–1110. https://doi.org/10.1016/j.cja.2015.12.016

    Article  Google Scholar 

  14. West J, Jhadav A (2007) ECDM methods for fluidic interfacing through thin glass substrates and the formation of spherical microcavities. J Micromech Microeng 17:403–409. https://doi.org/10.1088/0960-1317/17/2/028

    Article  Google Scholar 

  15. Jain VK, Adhikary S (2008) On the mechanism of material removal in electrochemical spark machining of quartz. J Mater Process Tech 200:460–470. https://doi.org/10.1016/j.jmatprotec.2007.08.071

    Article  CAS  Google Scholar 

  16. Peng WY, Liao YS (2004) Study of electrochemical discharge machining technology for slicing non-conductive brittle materials. J Mater Process Tech 149:363–369. https://doi.org/10.1016/j.jmatprotec.2003.11.054

    Article  CAS  Google Scholar 

  17. Wuthrich R, Fascio V (2005) Machining of non-conducting materials using electrochemical discharge phenomenon — an overview. Int J Mach Tools Manuf 45:1095–1108. https://doi.org/10.1016/j.ijmachtools.2004.11.011

    Article  Google Scholar 

  18. Didar TF, Dolatabadi A, Rolf W (2008) Characterization and modeling of 2D-glass micro-machining by spark-assisted chemical engraving ( SACE ) with constant velocity. J Micromech Microeng 18:1–9. https://doi.org/10.1088/0960-1317/18/6/065016

    Article  CAS  Google Scholar 

  19. Paul L, Hiremath SS (2015) Response surface modeling of micro channels in electrochemical discharge machining process. Appl Mech Mater:238–242. https://doi.org/10.4028/www.scientific.net/AMM.490-491.238

    Article  Google Scholar 

  20. Abou JD, Fatanat TD, Rolf W (2012) Micro-texturing channel surfaces on glass with spark assisted chemical engraving. Int J Mach Tools Manuf 57:66–72. https://doi.org/10.1016/j.ijmachtools.2012.01.012

    Article  Google Scholar 

  21. Paul L, Hiremath SS (2014) Evaluation of process parameters of ECDM using Grey relational analysis. Procedia Mater Sci 5:2273–2282. https://doi.org/10.1016/j.mspro.2014.07.446

    Article  CAS  Google Scholar 

  22. Wen KL, Chang TC, You ML (1998) The Grey entropy and its application in weighting analysis. In: SMC’98 conference proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics. IEEE Explore, San Diego, CA, USA, 1842–1844. doi: https://doi.org/10.1109/ICSMC.1998.728163

  23. Mehrabi F, Farahnakian M, Elhami S, Razfar MR (2018) Application of electrolyte injection to the electro-chemical discharge machining (ECDM) on the optical glass. J Mater Process Tech 255:665–672. https://doi.org/10.1016/j.jmatprotec.2018.01.016

    Article  CAS  Google Scholar 

  24. Hajian M, Razfar MR, Movahed S, Etefagh AH (2018) Experimental and numerical investigations of machining depth for glass material in electrochemical discharge milling. Precis Eng 51:521–528. https://doi.org/10.1016/j.precisioneng.2017.10.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somashekhar S. Hiremath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bindu Madhavi, J., Hiremath, S.S. Machining and Characterization of Channels and Textures on Quartz Glass Using μ-ECDM Process. Silicon 11, 2919–2931 (2019). https://doi.org/10.1007/s12633-019-0083-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-0083-6

Keywords

Navigation