Skip to main content
Log in

Physico-chemical Characterization of Siliceous Sands from Houéyogbé in Benin Republic (West Africa): Potentialities of Use in Glass Industry

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Physico-chemical characteristics of different silica sands from Houéyogbé municipality were evaluated. Samples were characterized by different techniques, such as granulometry, ICP-OES, X-ray diffraction (XRD), FT-IR analysis, Optical microscopy, and Thermogravimetric/ Differential Thermal Analyses confirmed that these sands contain a high percentage of silicon dioxide (SiO2), with a value approximately equal to 98.4 wt.%. Low Alumina content (<1.18 wt.%) and minor oxides such as Fe2O3, Na2O, K2O and TiO2 were also present (<0.6 wt.%) in the samples. In all cases, the grain size distributions of the samples fall within the recommended size range for glass making. There are two major fractions: first between 106 μm–212 μm and then in the range of 212 μm–400 μm. TG/DTA observations showed that sand samples were relatively stable until 1200 C. Furthermore, comparison of these results with standard criteria shows that the samples are fully capable for use as source of SiO2 for glass making (flat glass, colored glass), may be used for concrete making and are usable in foundry or in the ceramic industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ketner KB (1973) Silica sand. In: Brobst DA, Pratt WP (eds) United States Mineral Resources Professional Paper. [820]. U.S. Geological Survey, Washington, DC, pp 577–580

  2. Bourne HL (1994) Glass raw materials. In: Carr DD (ed) Industrial minerals and rocks. Society for Mining, Metallurgy, and Exploration, Littleton, pp 543–650

  3. Ariffin KS (2004) What is silica. Mineral Perindustrian EBS 425:1–7

    Google Scholar 

  4. British Standard BS2975 (1988) British Standard Methods for sampling and analysis of Glass making sands, p 22

  5. David MI (2011) A study of silica sand quality and end uses in Surrey and Kent. www.Ist-glass.Istthings.com/articles/glasscolouring.html

  6. Chate GR, Patel GCM, Deshpande AS, Parappagoudar MB (2017) Modeling and optimization of furan molding sand system using design of experiments and particle swarm optimization. J Process Mech Eng 0 (0):1–20

    Google Scholar 

  7. Chate GR, Patel GCM, Parappagoudar MB, Deshpande AS (2018) Application of statistical modelling and evolutionary optimization tools in resin-bonded molding sand system. In: Handbook of research on investigations in artificial life research and development, pp 123–152

  8. Chate GR, Patel GM, Kulkarni RM, Vernekar P, Deshpande AS, Parappagoudar MB (2018) Study of the effect of nano-silica particles on resin-bonded moulding sand properties and quality of casting. Silicon 10(5):1921–1936

    Article  CAS  Google Scholar 

  9. McLaws (1971) Uses and specification of silica sand. Research Council of Alberta Report 64 A, pp 71–74

  10. ABE (Agence Béninoise pour l’Environnement) (1998) Profil institutionnel de l’environnement du Bénin. http://www.abe.bj/IMG/pdf/Profil_Institutionnel_de_l_Environnement_du_Benin.pdf

  11. INSAE (Institut National de la Statistique et de l’Analyse Economique) (2013) Cahier des villages et quartiers de ville du département du Mono-RGPH-4. http://www.insae-bj.org/recensement-population.html?file=files/enquetes-recensements/rgph/Resultats_provisoires_RGPH4_2103.pdf

  12. Raghavan P, Ramaswamy S, Chandrasekhar S, Sundararajan M (2017) Evaluation for the beneficiability of silica sands from Cherthala area of Alappuzha district, Kerala, India. Ind J Geo Mar Sci 46(08):1596–1606

    Google Scholar 

  13. Emofurieta WO, Kayode AA, Coker SA (1992) Mineralogy, geochemistry and economic evaluation of Kaolin Deposit near Ubulu – Uku, Awo- Omana and Buan in Southern Nigeria. J Min Geol 28:210–281

    Google Scholar 

  14. Edem CA, Malu SP, Ita BI (2014) Characterization and beneficiation of the glass making potentials of silica sand deposit from River Benue North Central Nigeria. J Nat Sci Res 4(19):49–58

    Google Scholar 

  15. Carignan J, Hild P, Mevelle G, Morel J, Yeghicheyan D (2001) Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: a study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH. J Geostandards and Geoanal 25(2):187–198

    Article  CAS  Google Scholar 

  16. Oliver H, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J Paleolimnol 25:101–110

    Article  Google Scholar 

  17. Doremus RH (1973) Glass science. Wiley, New York, pp 78–90

    Google Scholar 

  18. Sell N (1982) Industrial pollution, control issues and techniques. Van Nostrand Reinhold, New York, pp 118–143

    Google Scholar 

  19. Paul A (1982) Chemistry of glass. Chapman and Hall, Oxford, pp 56–65

    Book  Google Scholar 

  20. Sundeen SP (1978) Geological study of sand deposits in the State of Michigan. Phase II. Final Report 6–7

  21. Hrdina K (1999) Production and properties of ULE glass glass with regards to EUV masks proceeding. In: International workshop on extreme ultra-violet lithography, corning, New York

  22. Dararutana P, Chetanachan P, Dutchaneephet J, Sirikulrat N (2008) Lead-free high refractive index glasses produced from local raw materials. Adv Mater Res 39–40:257–260

    Article  Google Scholar 

  23. Malu SP, Edem CA, Ita BI (2015) Chemical characterization of silica sand deposit from River Katsina-Ala, North central region of Nigeria. Glob J Pure Appl Chem Res 3:26–40

    Google Scholar 

  24. Tsai M (2004) The study of formation colloidal silica via sodium silicate. Mater Sci Eng 106:52–55

    Article  CAS  Google Scholar 

  25. Carnin LPR, Folgueras MV, Luvizão RR, Correia SL, DaCunha CJ, Dungan RS (2012) Use of an integrated approach to characterize the physico-chemical properties of foundry green sands. Thermochim Acta 543:150–155

    Article  CAS  Google Scholar 

  26. Štyriaková I, Mockovčiaková A, Štyriak I, Kraus I, Uhlík P, Madejová J, Orolínová Z (2012) Bioleaching of clays and iron oxide coatings from quartz sands. Appl Clay Sci 61:1–7

    Article  CAS  Google Scholar 

  27. Boussaa SA, Kheloufi A, Zaourar NB, Kerkar F (2016) Valorization of algerian sand for photovoltaic application. Acta Phys Polon A 1:130–137

    Google Scholar 

  28. Fitzpatrick RW, Schwertmann U (1982) A Substituated Goetite—another weathering indicator of pedogenic and environments in South Africa. Geoderma 27:335–347

    Article  CAS  Google Scholar 

  29. Weckler BLHD (1998) Lattice vibration spectra. Part XCV. Infrared spectroscopic studies on the ironoxide hydroxides goethite (α), akagankite (β),lepidocrocite (γ), and feroxyhite (σ). Eur J Solid State Inorganic Chem 35:531–544

    Article  CAS  Google Scholar 

  30. Chakchouk A, Samet BM (2006) Study on the potential use of Tunisian clays as pozzolanic material. Appl Clays Sci 33:79–88

    Article  CAS  Google Scholar 

  31. Sdiri A, Higashi T, Hatta T, Jamoussi F, Tase N (2010) Mineralogical and spectroscopic characterization and potential, environmental use of limestone from the Abiod Formation. Tunis Environ Earth Sci 61:1275–1287

    Article  CAS  Google Scholar 

  32. Brett NH, MacKenzie KJD, Sharp JH (1970) The thermal decomposition of hydrous layer silicates and their related hydroxides. Q Rev Chem Soc 24:185

    Article  CAS  Google Scholar 

  33. Berton Y, Leberre P (1983) Guide de prospection de matériaux de carrière. Manuel et Méthodes n5. Edition BRGM

  34. Gaied MS (1990) Les sables siliceux, valorisation et divers domaines d’utilisation. Rapport ONM

  35. Bonicelli A, Filippo GF, Crispino M (2015) Experimental study on the effects of fine sand addition on differentially compacted pervious concrete. Constr Build Mater 91:102–110

    Article  Google Scholar 

Download references

Acknowledgments

The “Centre de RecherchesPétrographiques et Géochimiques (CRPG)” is hereby acknowledged for their technical assistance during the ICP-OES studies. Dr. Abdel-Aziz OSSENI provided valuable assistance for the Map of Houéyogbé municipality showing sample locations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sèmiyou A. Osseni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osseni, S.A., Masseguin, M., Sagbo, E.V. et al. Physico-chemical Characterization of Siliceous Sands from Houéyogbé in Benin Republic (West Africa): Potentialities of Use in Glass Industry. Silicon 11, 2015–2023 (2019). https://doi.org/10.1007/s12633-018-0022-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-0022-y

Keywords

Navigation