Skip to main content
Log in

1 H and 29Si NMR Spectroscopy as a Powerful Analytical Tool to Evaluate the Activity of Various Platinum-Based Catalysts in Model Olefin Hydrosilylation

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The structure of polysiloxane copolymers obtained by hydrosilylation of 1-octene with polymethylhydrosiloxane (PMHS) was analyzed by 29Si NMR spectroscopy and revealed a tendency to form block copolymers. Although all the platinum catalysts that were used showed a tendency to form some block structures, only Karstedt catalyst led to well defined block copolymers. However, the tacticity of these copolymers could not be determined using Heteronuclear Multiple Bond Correlation (HMBC) 2D (1H/ 29Si) NMR technique. The following criteria were found to affect the structure of the hydrosilylation product: low SiH conversion, the “age” of the Karstedt catalyst (low TON) and high octene/SiH ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marciniec B (2009) Hydrosilylation: a comprehensive review on recent advances. Springer

  2. Troegel D, Stohrer J (2011) Recent advances and actual challenges in late transition metal catalyzed hydrosilylation of olefins from an industrial point of view. Coord Chem Rev 255(13–14):1440–1459

    Article  CAS  Google Scholar 

  3. Hofmann M, Eberle HJ (2006) Platinum catalysts that are supported on nanoscale titanium dioxide, use thereof in hydrosilylation, hydrosilylation method using said catalysts and compositions comprising said catalysts. WO Patent WO2006061138

  4. Alonso F, Buitrago R, Moglie Y, Ruiz-Martinez J, Sepulveda-Escribano A, Yus M (2011) Hydrosilylation of alkynes catalysed by platinum on titania. J Organomet Chem 696(1):368–372

    Article  CAS  Google Scholar 

  5. Wawrzynczak A, Dutkiewicz M, Gulinski J, Maciejewski H, Marciniec B, Fiedorow R (2011) Hydrosilylation of n-alkenes and allyl chloride over platinum supported on styrene-divinylbenzene copolymer. Catal Today 169(1):69–74

    Article  CAS  Google Scholar 

  6. Schmid G, West H, Mehles H, Lehnert A (1997) Hydrosilation reactions catalyzed by supported bimetallic colloids. Inorg Chem 36(5):891–895

    Article  CAS  Google Scholar 

  7. Klein K, Knott W, Windbiel D (2000) Synergistic catalyst system and method for carrying out hydrosilylation reactions. Patent EP1031603

  8. Tondreau AM, Atienza CCH, Weller KJ, Nye SA, Lewis KM, Delis JGP, Chirik PJ (2012) Iron catalysts for selective anti-markovnikov alkene hydrosilylation using tertiary silanes. Science (New York, NY) 335(6068):567–570

    Article  CAS  Google Scholar 

  9. Saxena A, Markanday M, Sarkar A, Yadav VK, Brar AS (2011) A systematic approach to decipher the microstructure of methyl hydrosiloxane copolymers and its impact on their reactivity trends. Macromolecules 44(16):6480–6487

    Article  CAS  Google Scholar 

  10. Kuwae Y, Kushibiki N (1989) NMR study on microstructure of polymer produced by hydrosilation of styrene with poly(hydrogenmethylsiloxane). J Polym Sci Part A: Polym Chem 27(12):3969–3975

    Article  CAS  Google Scholar 

  11. Cancouet P, Pernin S, Helary G, Sauvet G (2000) Functional polysiloxanes. II. neighboring effect in the hydrosilylation of poly(hydrogenmethylsiloxane-co-dimethylsiloxane)s by allylglycidylether. J Polym Sci Part A: Polym Chem 38(5):837–845

    Article  CAS  Google Scholar 

  12. Cancouet P, Daudet E, Helary G, Moreau M, Sauvet G (2000) Functional polysiloxanes. i. microstructure of poly(hydrogenmethylsiloxane-co-dimethylsiloxane)s obtained by cationic copolymerization. J Polym Science Part A: Polym Chem 38(5):826–836

    Article  CAS  Google Scholar 

  13. Marko IE, Sterin S, Buisine O, Mignani G, Branlard P, Tinant B, Declercq JP (2002) Selective and efficient platinum(0)-carbene complexes as hydrosilylation catalysts. Science 298(5591):204–206

    Article  CAS  Google Scholar 

  14. Pelzer K, Hvecker M, Boualleg M, Candy JP, Basset JM (2011) Stabilization of 200-atom platinum nanoparticles by organosilane fragments. Angew Chem Int Ed 50(22):5170–5173

    Article  CAS  Google Scholar 

  15. Lewis LN, Lewis N (1986) Platinum-catalyzed hydrosilylation - colloid formation as the essential step. J Am Chem Soc 108(23):7228–7231

    Article  CAS  Google Scholar 

  16. Stein J, Lewis LN, Gao Y, Scott RA (1999) In situ determination of the active catalyst in hydrosilylation reactions using highly reactive pt(0) catalyst precursors. J Am Chem Soc 121(15):3693–3703

    Article  CAS  Google Scholar 

  17. Buisine O, Berthon-Gelloz G, Briere JF, Sterin S, Mignani G, Branlard P, Tinant B, Declercq JP, Marko IE (2005) Second generation n-heterocyclic carbenePt(0) complexes as efficient catalysts for the hydrosilylation of alkenes. Chem Commun 30:3856–3858

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Meille.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meille, V., Zanota, ML., Da Cruz-Boisson, F. et al. 1 H and 29Si NMR Spectroscopy as a Powerful Analytical Tool to Evaluate the Activity of Various Platinum-Based Catalysts in Model Olefin Hydrosilylation. Silicon 6, 247–255 (2014). https://doi.org/10.1007/s12633-014-9221-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-014-9221-3

Keywords

Navigation