Skip to main content
Log in

Alkyl dimethyl betaine activates the low-temperature collection capacity of sodium oleate for scheelite

  • Research Article
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The impact of alkyl dimethyl betaine (ADB) on the collection capacity of sodium oleate (NaOl) at low temperatures was evaluated using flotation tests at various scales. The low-temperature synergistic mechanism of ADB and NaOl was explored by infrared spectroscopy, X-ray photoelectron spectroscopy, surface tension measurement, foam performance test, and flotation reagent size measurement. The flotation tests revealed that the collector mixed with octadecyl dimethyl betaine (ODB) and NaOl in a mass ratio of 4:96 exhibited the highest collection capacity. The combined collector could increase the scheelite recovery by 3.48% at low temperatures of 8–12°C. This is particularly relevant in the Luanchuan area, which has the largest scheelite concentrate output in China. The results confirmed that ODB enhanced the collection capability of NaOl by improving the dispersion and foaming performance. Betaine can be introduced as an additive to NaOl to improve the recovery of scheelite at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q.B. Cao, J.H. Cheng, S.M. Wen, C.X. Li, S.J. Bai, and D. Liu, A mixed collector system for phosphate flotation, Miner. Eng., 78(2015), p. 114.

    Article  CAS  Google Scholar 

  2. F. Zhou, T. Chen, C.J. Yan, et al., The flotation of low-grade manganese ore using a novel linoleate hydroxamic acid, Colloids Surf. A: Physicochem. Eng. Aspects, 466(2015), p. 1.

    Article  CAS  Google Scholar 

  3. H.M. Yu, H.J. Wang, and C.Y. Sun, Comparative studies on phosphate ore flotation collectors prepared by hogwash oil from different regions, Int. J. Min. Sci. Technol., 28(2018), No. 3, p. 453.

    Article  CAS  Google Scholar 

  4. X.M. Luo, W.Z. Yin, Y.F. Wang, C.Y. Sun, Y.Q. Ma, and J. Liu, Effect and mechanism of dolomite with different size fractions on hematite flotation using sodium oleate as collector, J. Cent. South Univ., 23(2016), No. 3, p. 529.

    Article  CAS  Google Scholar 

  5. X. Wang, W.Q. Qin, F. Jiao, et al., Review of tungsten resource reserves, tungsten concentrate production and tungsten beneficiation technology in China, Trans. Nonferrous Met. Soc. China, 32(2022), No. 7, p. 2318.

    Article  CAS  Google Scholar 

  6. N. Kupka and M. Rudolph, Froth flotation of scheelite—A review, Int. J. Min. Sci. Technol., 28(2018), No. 3, p. 373.

    Article  CAS  Google Scholar 

  7. W.H. Jia, W.Q. Qin, C. Chen, H.L. Zhu, and F. Jiao, Collecting performance of vegetable oils in scheelite flotation and differential analysis, J. Cent. South Univ., 26(2019), No. 4, p. 787.

    Article  CAS  Google Scholar 

  8. W.D. Guo, Y.X. Han, Y.M. Zhu, Y.J. Li, and Z.D. Tang, Effect of amide group on the flotation performance of lauric acid, Appl. Surf. Sci., 505(2020), art. No. 144627.

  9. H. Zhang, W.G. Liu, C. Han, and H.Q. Hao, Effects of monohydric alcohols on the flotation of magnesite and dolomite by sodium oleate, J. Mol. Liq., 249(2018), p. 1060.

    Article  CAS  Google Scholar 

  10. J.F. He, C.G. Liu, and Y.K. Yao, Flotation intensification of the coal slime using a new compound collector and the interaction mechanism between the reagent and coal surface, Powder Technol., 325(2018), p. 333.

    Article  CAS  Google Scholar 

  11. T. Coward, J.G.M. Lee, and G.S. Caldwell, Harvesting microalgae by CTAB-aided foam flotation increases lipid recovery and improves fatty acid methyl ester characteristics, Biomass Bioenergy, 67(2014), p. 354.

    Article  CAS  Google Scholar 

  12. M. Krasowska, J. Zawala, B.H. Bradshaw-Hajek, J.K. Ferri, and D.A. Beattie, Interfacial characterisation for flotation: 1. solid-liquid interface, Curr. Opin. Colloid Interface Sci., 37(2018), p. 61.

    Article  CAS  Google Scholar 

  13. A. Vidyadhar, N. Kumari, and R.P. Bhagat, Adsorption mechanism of mixed collector systems on hematite flotation, Miner. Eng., 26(2012), p. 102.

    Article  CAS  Google Scholar 

  14. J. Tian, L.H. Xu, W. Deng, H. Jiang, Z.Y. Gao, and Y.H. Hu, Adsorption mechanism of new mixed anionic/cationic collectors in a spodumene-feldspar flotation system, Chem. Eng. Sci., 164(2017), p. 99.

    Article  CAS  Google Scholar 

  15. D. López-Díaz, I. García-Mateos, and M.M. Velázquez, Synergism in mixtures of zwitterionic and ionic surfactants, Colloids Surf. A: Physicochem. Eng. Aspects, 270–271(2005), p. 153.

    Article  Google Scholar 

  16. W.H. Jia, F. Jiao, H.L. Zhu, L. Xu, and W.Q. Qin, Mitigating the negative effects of feldspar slime on spodumene flotation using mixed anionic/cationic collector, Miner. Eng., 168(2021), art. No. 106813.

  17. L.O. Filippov, I.V. Filippova, Z. Lafhaj, and D. Fornasiero, The role of a fatty alcohol in improving calcium minerals flotation with oleate, Colloids Surf. A: Physicochem. Eng. Aspects, 560(2019), p. 410.

    Article  CAS  Google Scholar 

  18. H. Sis and S. Chander, Improving froth characteristics and flotation recovery of phosphate ores with nonionic surfactants, Miner. Eng., 16(2003), No. 7, p. 587.

    Article  CAS  Google Scholar 

  19. K. Theander and R.J. Pugh, Synergism and foaming properties in mixed nonionic/fatty acid soap surfactant systems, J. Colloid Interface Sci., 267(2003), No. 1, p. 9.

    Article  CAS  Google Scholar 

  20. C. Chen, H.L. Zhu, W. Sun, Y.H. Hu, W.Q. Qin, and R.Q. Liu, Synergetic effect of the mixed anionic/non-ionic collectors in low temperature flotation of scheelite, Minerals, 7(2017), No. 6, art. No. 87.

  21. W.H. Sun, W.G. Liu, S.J. Dai, T. Yang, H. Duan, and W.B. Liu, Effect of Tween 80 on flotation separation of magnesite and dolomite using NaOL as the collector, J. Mol. Liq., 315(2020), art. No. 113712.

  22. Z.Y. Liu, Z.C. Xu, H. Zhou, et al., Interfacial behaviors of betaine and binary betaine/carboxylic acid mixtures in molecular dynamics simulation, J. Mol. Liq., 240(2017), p. 412.

    Article  CAS  Google Scholar 

  23. J.B. Yang and J.R. Hou, Synthesis of erucic amide propyl betaine compound fracturing fluid system, Colloids Surf. A: Physicochem. Eng. Aspects, 602(2020), art. No. 125098.

  24. X.L. Lu, M. Zhang, L. Xie, and Q. Zhou, Coagulative colloidal gas aphrons generated from polyaluminum chloride (PACl)/do-decyl dimethyl betaine (BS-12) solution: Interfacial characteristics and flotation potential, Colloids Surf. A: Physicochem. Eng. Aspects, 530(2017), p. 209.

    Article  CAS  Google Scholar 

  25. Z.H. Zhou, D.S. Ma, Q. Zhang, et al., Surface dilational rheology of betaine surfactants: Effect of molecular structures, Colloids Surf. A: Physicochem. Eng. Aspects, 538(2018), p. 739.

    Article  CAS  Google Scholar 

  26. W.Y. Shao, J.Y. Zhang, K. Wang, C.R. Liu, and S.M. Cui, Cocamidopropyl betaine-assisted foam separation of freshwater microalgae Desmodesmus brasiliensis, Bioehem. Eng. J., 140(2018), p. 38.

    Article  CAS  Google Scholar 

  27. X. Wang, W.Q. Qin, F. Jiao, et al., Review on development of low-grade scheelite recovery from molybdenum tailings in Luanchuan, China: A case study of Luoyang Yulu Mining Company, Trans. Nonferrous Met. Soc. China, 32(2022), No. 3, p. 980.

    Article  CAS  Google Scholar 

  28. X. Wang, W.H. Jia, C.R. Yang, et al., Innovative application of sodium tripolyphosphate for the flotation separation of scheelite from calcite, Miner. Eng., 170(2021), art. No. 106981.

  29. N. Kupka and M. Rudolph, Role of sodium carbonate in scheelite flotation—A multi-faceted reagent, Miner. Eng., 129(2018), p. 120.

    Article  CAS  Google Scholar 

  30. Y. Foucaud, L. Filippov, I. Filippova, and M. Badawi, The challenge of tungsten skarn processing by froth flotation: A review, Front. Chem., 8(2020), art. No. 230.

  31. X. Wang, H. Song, F. Jiao, et al., Utilization of wastewater from zeolite production in synthesis of flotation reagents, Trans. Nonferrous Met. Soc. China, 30(2020), No. 11, p. 3093.

    Article  CAS  Google Scholar 

  32. T. Gaudin, P. Rotureau, I. Pezron, and G. Fayet, Investigating the impact of sugar-based surfactants structure on surface tension at critical micelle concentration with structure-property relationships, J. Colloid Interface Sci., 516(2018), p. 162.

    Article  CAS  Google Scholar 

  33. E. Calvo, R. Bravo, A. Amigo, and J. Gracia-Fadrique, Dynamic surface tension, critical micelle concentration, and activity coefficients of aqueous solutions of nonyl phenol ethoxylates, Fluid Phase Equilib., 282(2009), No. 1, p. 14.

    Article  CAS  Google Scholar 

  34. J. Church, M.R. Willner, B.R. Renfro, et al., Impact of interfacial tension and critical micelle concentration on bilgewater oil separation, J. Water Process. Eng., 39(2021), art. No. 101684.

  35. A. Pal, R. Punia, and G.P. Dubey, Formation of mixed micelles in an aqueous mixture of a biamphiphilic surface active ionic liquid and an anionic surfactant: Experimental and theoretical study, J. Mol. Liq., 337(2021), art. No. 116355.

  36. S.M.S. Hussain, M.S. Kamal, and L.T. Fogang, Synthesis and physicochemical investigation of betaine type polyoxyethylene zwitterionic surfactants containing different ionic headgroups, J. Mol. Struct., 1178(2019), p. 83.

    Article  CAS  Google Scholar 

  37. A. Atrafi and M. Pawlik, Foamability of fatty acid solutions and surfactant transfer between foam and solution phases, Miner. Eng., 100(2017), p. 99.

    Article  CAS  Google Scholar 

  38. Y.F. Cui, F. Jiao, Q. Wei, X. Wang, and L.Y. Dong, Flotation separation of fluorite from calcite using sulfonated lignite as depressant, Sep. Purif. Technol., 242(2020), art. No. 116698.

  39. X. Wang, F. Jiao, W.Q. Qin, et al., Sulfonated brown coal: A novel depressant for the selective flotation of scheelite from calcite, Colloids Surf. A: Physicochem. Eng. Aspects, 602(2020), art. No. 125006.

  40. Q.Y. Meng, Q.M. Feng, and L.M. Ou, Flotation behavior and adsorption mechanism of fine wolframite with octyl hydroxamic acid, J. Cent. South Univ., 23(2016), No. 6, p. 1339.

    Article  CAS  Google Scholar 

  41. G. Güler, R.M. Gärtner, C. Ziegler, and W. Mäntele, Lipid-protein interactions in the regulated betaine symporter BetP probed by infrared spectroscopy, J. Biol. Chem., 291(2016), No. 9, p. 4295.

    Article  Google Scholar 

  42. C. Harbeck, R. Faurie, and T. Scheper, Application of near-infrared spectroscopy in the sugar industry for the detection of betaine, Anal. Chim. Acta, 501(2004), No. 2, p. 249.

    Article  CAS  Google Scholar 

  43. H. Kumar, J. Kaur, and P. Awasthi, Scrutinizing the micellization behaviour of 14-2-14 gemini surfactant and tetradecyltrimethylammonium bromide in aqueous solutions of betaine hydrochloride drug, J. Mol. Liq., 338(2021), art. No. 116642.

  44. C.H. Zhang, Y.H. Hu, W. Sun, J.H. Zhai, Z.G. Yin, and Q.J. Guan, Effect of phytic acid on the surface properties of scheelite and fluorite for their selective flotation, Colloids Surf. A: Physicochem. Eng. Aspects, 573(2019), p. 80.

    Article  CAS  Google Scholar 

  45. W.P. Yan, C. Liu, G.H. Ai, Q.M. Feng, and W.C. Zhang, Flotation separation of scheelite from calcite using mixed collectors, Int. J. Miner. Process., 169(2017), p. 106.

    Article  CAS  Google Scholar 

  46. C. Wang, S. Ren, W. Sun, et al., Selective flotation of scheelite from calcite using a novel self-assembled collector, Miner. Eng., 171(2021), art. No. 107120.

  47. Z.Y. Gao, Z.Y. Jiang, W. Sun, et al., New role of the conventional foamer sodium N-lauroylsarcosinate as a selective collector for the separation of calcium minerals, J. Mol. Liq., 318(2020), art. No. 114031.

  48. F. Jiao, L.Y. Dong, W.Q. Qin, W. Liu, and C.Q. Hu, Flotation separation of scheelite from calcite using pectin as depressant, Miner. Eng., 136(2019), p. 120.

    Article  CAS  Google Scholar 

  49. Q. Wei, L.Y. Dong, F. Jiao, and W.Q. Qin, Selective flotation separation of fluorite from calcite by using sesbania gum as depressant, Miner. Eng., 174(2021), art. No. 107239.

  50. S.F. Burlatsky, V.V. Atrazhev, D.V. Dmitriev, et al., Surface tension model for surfactant solutions at the critical micelle concentration, J. Colloid Interface Sci., 393(2013), p. 151.

    Article  CAS  Google Scholar 

  51. Q. Lin, K.H. Liu, Z.G. Cui, X.M. Pei, J.Z. Jiang, and B.L. Song, pH-Responsive Pickering foams stabilized by silica nanoparticles in combination with trace amount of dodecyl dimethyl carboxyl betaine, Colloids Surf. A: Physicochem. Eng. Aspects, 544(2018), p. 44.

    Article  CAS  Google Scholar 

  52. A. Atrafi, C.O. Gomez, J.A. Finch, and M. Pawlik, Frothing behavior of aqueous solutions of oleic acid, Miner. Eng., 36–38(2012), p. 138.

    Article  Google Scholar 

  53. C. Da, S. Alzobaidi, G.Q. Jian, et al., Carbon dioxide/water foams stabilized with a zwitterionic surfactant at temperatures up to 150°C in high salinity brine, J. Petrol. Sci. Eng., 166(2018), p. 880.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51904339 and No. 51974364), the Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, China (No. 2018TP1002), the Co-Innovation Centre for Clean and Efficient Utilization of Strategic Metal Mineral Resources, and the Postgraduate Independent Exploration and Innovation Project of Central South University, China (No. 2018zzts224).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenqing Qin or Fen Jiao.

Ethics declarations

The authors declare no conflicts of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, Z., Cui, Y. et al. Alkyl dimethyl betaine activates the low-temperature collection capacity of sodium oleate for scheelite. Int J Miner Metall Mater 31, 71–80 (2024). https://doi.org/10.1007/s12613-023-2718-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-023-2718-2

Keywords

Navigation