Skip to main content
Log in

Recent advances and influencing parameters in developing electrode materials for symmetrical solid oxide fuel cells

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

This article delivers a robust overview of potential electrode materials for use in symmetrical solid oxide fuel cells (S-SOFCs), a relatively new SOFC technology. To this end, this article provides a comprehensive review of recent advances and progress in electrode materials for S-SOFC, discussing both the selection of materials and the challenges that come with making that choice. This article discussed the relevant factors involved in developing electrodes with nano/microstructure. Nanocomposites, e.g., non-cobalt and lithiated materials, are only a few of the electrode types now being researched. Furthermore, the phase structure and microstructure of the produced materials are heavily influenced by the synthesis procedure. Insights into the possibilities and difficulties of the material are discussed. To achieve the desired microstructural features, this article focuses on a synthesis technique that is either the most recent or a better iteration of an existing process. The portion of this analysis that addresses the risks associated with manufacturing and the challenges posed by materials when fabricating S-SOFCs is the most critical. This article also provides important and useful recommendations for the strategic design of electrode materials researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Fabbri, D. Pergolesi, and E. Traversa, Materials challenges toward proton-conducting oxide fuel cells: A critical review, Chem. Soc. Rev., 39(2010), No. 11, p. 4355.

    Article  CAS  Google Scholar 

  2. N. Rajalakshmi, R. Balaji, and S. Ramakrishnan, Recent developments in hydrogen fuel cells: Strengths and weaknesses, [in] Sustainable Fuel Technologies Handbook, Elsevier, Amsterdam, 2021, p. 431.

    Chapter  Google Scholar 

  3. X. Fan, M. Tebyetekerwa, Y. Wu, R.R. Gaddam, and X.S. Zhao, Origin of excellent charge storage properties of defective tin disulphide in magnesium/lithium-ion hybrid batteries, Nano Micro Lett., 14(2022), No. 1, art. No. 177.

  4. J.A. Delborne, D. Hasala, A. Wigner, and A. Kinchy, Dueling metaphors, fueling futures: “Bridge fuel” visions of coal and natural gas in the United States, Energy Res. Soc. Sci., 61(2020), art. No. 101350.

  5. Y.J. Yang, Y.H. Yu, J. Li, et al., Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction, Nano Micro Lett., 13(2021), No. 1, art. No. 160.

  6. Z.W. Cao, R. Momen, S.S. Tao, et al., Metal-organic framework materials for electrochemical supercapacitors, Nano Micro Lett., 14(2022), No. 1, art. No. 181.

  7. C. H. Wendel, P. Kazempoor, and R. J. Braun, Novel electrical energy storage system based on reversible solid oxide cells: System design and operating conditions, J. Power Sources, 276(2015), p. 133.

    Article  CAS  Google Scholar 

  8. X.Y. Huang, L.H. Li, S.F. Zhao, et al., MOF-like 3D graphene-based catalytic membrane fabricated by one-step laser scribing for robust water purification and green energy production, Nano Micro Lett., 14(2022), No. 1, art. No. 174.

  9. X.Y. Wang, X.M. Li, H.Q. Fan, and L.T. Ma, Solid electrolyte interface in Zn-based battery systems, Nano Micro Lett., 14(2022), No. 1, art. No. 205.

  10. A. Boudghene Stambouli and E. Traversa, Fuel cells, an alternative to standard sources of energy, Renew. Sustain. Energy Rev., 6(2002), No. 3, p. 295.

    Article  Google Scholar 

  11. T. Wilberforce, A. Alaswad, A. Palumbo, M. Dassisti, and A.G. Olabi, Advances in stationary and portable fuel cell applications, Int. J. Hydrogen Energy, 41(2016), No. 37, p. 16509.

    Article  CAS  Google Scholar 

  12. H.J. Ying, P.F. Huang, Z. Zhang, et al., Freestanding and flex-dendrite-free aqueous Zn-ion batteries, Nano Micro Lett., 14(2022), No. 1, art. No. 180.

  13. B. Zhang, Y.Y. Feng, and W. Feng, Azobenzene-based solar thermal fuels: A review, Nano Micro Lett., 14(2022), art. No. 138

  14. J. Romdhane and H. Louahlia-Gualous, Energy assessment of PEMFC based MCCHP with absorption chiller for small scale French residential application, Int. J. Hydrogen Energy, 43(2018), No. 42, p. 19661.

    Article  CAS  Google Scholar 

  15. S.S.C. Chuang and L. Zhang, Perovskites and related mixed oxides for SOFC applications, [in] Perovskites and Related Mixed Oxides, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2015, p. 863.

    Google Scholar 

  16. G.S. Ma, D. Zhang, P. Guo, et al., Phase orientation improved the corrosion resistance and conductivity of Cr2AlC coatings for metal bipolar plates, J. Mater. Sci. Technol., 105(2022), p. 36.

    Article  CAS  Google Scholar 

  17. S.W. Lee, B. Lee, C. Baik, T.Y. Kim, and C. Pak, Multifunctional Ir-Ru alloy catalysts for reversal-tolerant anodes of polymer electrolyte membrane fuel cells, J. Mater. Sci. Technol., 60(2021), p. 105.

    Article  CAS  Google Scholar 

  18. H.A. Tahini, X. Tan, W. Zhou, Z.H. Zhu, U. Schwingenschlögl, and S.C. Smith, Sc and Nb dopants in Sr-CoO3 modulate electronic and vacancy structures for improved water splitting and SOFC cathodes, Energy Storage Mater., 9(2017), p. 229.

    Article  Google Scholar 

  19. R. Pelosato, G. Cordaro, D. Stucchi, C. Cristiani, and G. Dotelli, Cobalt based layered perovskites as cathode material for intermediate temperature Solid Oxide Fuel Cells: A brief review, J. Power Sources, 298(2015), p. 46.

    Article  CAS  Google Scholar 

  20. A. Choudhury, H. Chandra, and A. Arora, Application of solid oxide fuel cell technology for power generation—A review, Renew. Sustain. Energy Rev., 20(2013), p. 430.

    Article  CAS  Google Scholar 

  21. H.B. Li, N. Xu, Y.H. Fang, H. Fan, Z. Lei, and M.F. Han, Syngas production via coal char-CO2 fluidized bed gasification and the effect on the performance of LSCFN// LSGM// LSCFN solid oxide fuel cell, J. Mater. Sci. Technol., 34(2018), No. 2, p. 403.

    Article  CAS  Google Scholar 

  22. Y.P. Wang, S.H. Liu, H.Y. Zhang, et al., Structured La0.6Sr0.4Co0.2Fe0.8O3–δ cathode with large-scale vertical cracks by atmospheric laminar plasma spraying for IT-SOFCs, J. Alloys Compd., 825(2020), art. No. 153865.

  23. M. Mogensen and K. Kammer, Conversion of hydrocarbons in solid oxide fuel cells, Annu. Rev. Mater. Res., 33(2003), No. 1, p. 321.

    Article  CAS  Google Scholar 

  24. M.D. Fernandes, V. Bistritzki, R.Z. Domingues, T. Matencio, M. Rapini, and R.D. Sinisterra, Solid oxide fuel cell technology paths: National innovation system contributions from Japan and the United States, Renew. Sustain. Energy Rev., 127(2020), p. 109879.

    Article  CAS  Google Scholar 

  25. K. Huang and S.C. Singhal, Cathode-supported tubular solid oxide fuel cell technology: A critical review, J. Power Sources, 237(2013), p. 84.

    Article  CAS  Google Scholar 

  26. M.S. Javed, N. Shaheen, A. Idrees, C.G. Hu, and R. Raza, Electrochemical investigations of cobalt-free perovskite cathode material for intermediate temperature solid oxide fuel cell, Int. J. Hydrogen Energy, 42(2017), No. 15, p. 10416.

    Article  CAS  Google Scholar 

  27. V. Sariboga and M.A. Faruk Öksüzömer, Cu–CeO2 anodes for solid oxide fuel cells: Determination of infiltration characteristics, J. Alloys Compd., 688(2016), p. 323.

    Article  CAS  Google Scholar 

  28. H. Aslannejad, L. Barelli, A. Babaie, and S. Bozorgmehri, Effect of air addition to methane on performance stability and coking over NiO-YSZ anodes of SOFC, Appl. Energy, 177(2016), p. 179.

    Article  CAS  Google Scholar 

  29. W.X. Kao, M.C. Lee, Y.C. Chang, T.N. Lin, C.H. Wang, and J.C. Chang, Fabrication and evaluation of the electrochemical performance of the anode-supported solid oxide fuel cell with the composite cathode of La0.8Sr0.2MnO3–δ-Gadolinia-doped ceria oxide/La0.8Sr0.2MnO3–δ, J. Power Sources, 195(2010), No. 19, p. 6468.

    Article  CAS  Google Scholar 

  30. A.A. Jais, S.A. Ali, M. Anwar, et al., Performance of Ni/10Sc1CeSZ anode synthesized by glycine nitrate process assisted by microwave heating in a solid oxide fuel cell fueled with hydrogen or methane, J. Solid State Electrochem., 24(2020), p. 711.

    Article  CAS  Google Scholar 

  31. K. Venkataramana, C. Madhuri, C. Madhusudan, Y.S. Reddy, G. Bhikshamaiah, and C.V. Reddy, Investigation on La3+ and Dy3+ co-doped ceria ceramics with an optimized average atomic number of dopants for electrolytes in IT-SOFCs, Ceram. Int., 44(2018), No. 6, p. 6300.

    Article  CAS  Google Scholar 

  32. X.Z. Peng, Y.F. Tian, Y. Liu, et al., A double perovskite decorated carbon-tolerant redox electrode for symmetrical SOFC, Int. J. Hydrogen Energy, 45(2020), No. 28, p. 14461.

    Article  CAS  Google Scholar 

  33. L. dos Santos-Gómez, J.M. Porras-Vázquez, E.R. Losilla, D. Marrero-López, and P.R. Slater, Investigation of PO43− oxyanion-doping on the properties of CaFe0.4Ti0.6O3–δ for potential application as symmetrical electrodes for SOFCs, J. Alloys Compd., 835(2020), art. No. 155437.

  34. B.B. Niu, C.L. Lu, W.D. Yi, et al., In-situ growth of nano-particles-decorated double perovskite electrode materials for symmetrical solid oxide cells, Appl. Catal., B, 270(2020), art. No. 118842.

  35. W.W. Fan, Z. Sun, Y. Bai, K. Wu, and Y.H. Cheng, Highly stable and efficient perovskite ferrite electrode for symmetrical solid oxide fuel cells, ACS Appl. Mater. Interfaces, 11(2019), No. 26, p. 23168.

    Article  CAS  Google Scholar 

  36. S.H. Lee, K. Lee, Y.H. Jang, and J. Bae, Fabrication of solid oxide fuel cells (SOFCs) by solvent-controlled co-tape casting technique, Int. J. Hydrogen Energy, 42(2017), No. 3, p. 1648.

    Article  CAS  Google Scholar 

  37. M.R. Somalu, A. Muchtar, W.R.W. Daud, and N.P. Brandon, Screen-printing inks for the fabrication of solid oxide fuel cell films: A review, Renew. Sustain. Energy Rev., 75(2017), p. 426.

    Article  CAS  Google Scholar 

  38. L. Bernadet, C. Moncasi, M. Torrell, and A. Tarancón, High-performing electrolyte-supported symmetrical solid oxide electrolysis cells operating under steam electrolysis and co-electrolysis modes, Int. J. Hydrogen Energy, 45(2020), No. 28, p. 14208.

    Article  CAS  Google Scholar 

  39. F. Zurlo, I. Natali Sora, V. Felice, et al., Copper-doped lanthanum ferrites for symmetric SOFCs, Acta Mater., 112(2016), p. 77.

    Article  CAS  Google Scholar 

  40. J. C. Ruiz-Morales, D. Marrero-López, J. Canales-Vázquez, and J. T. S. Irvine, Symmetric and reversible solid oxide fuel cells, RSC Adv., 1(2011), No. 8, p. 1403.

    Article  CAS  Google Scholar 

  41. C. Su, W. Wang, M. Liu, M. O. Tadé, and Z. Shao, Progress and Prospects in Symmetrical Solid Oxide Fuel Cells with Two Identical Electrodes, Adv. Energy Mater., 5(2015), No. 14, p. 1500188.

    Article  Google Scholar 

  42. X. Chen, J.T. Wang, N. Yu, et al., A robust direct-propane solid oxide fuel cell with hierarchically oriented full ceramic anode consisting with in-situ exsolved metallic nano-catalysts, J. Membr. Sci., 677(2023), art. No. 121637.

  43. H.D. Cai, L.L. Zhang, J.S. Xu, et al., Cobalt-free La0.5Sr0.5Fe0.9Mo0.1O3–δ electrode for symmetrical SOFC running on H2 and CO fuels, Electrochim. Acta, 320(2019), art. No. 134642.

  44. Y.R. Yang, S.S. Li, Z.B. Yang, et al., One step synthesis of Sr2Fe1.3Co0.2Mo0.5O6–δ-Gd0.1Ce0.9O2–δ for symmetrical solid oxide fuel cells, J. Electrochem. Soc., 167(2020), No. 8, art. No. 084503.

  45. Y.Z. Lu, N. Mushtaq, M.A.K. Yousaf Shah, et al., Ba0.5Sr0.5Fe0.8Sb0.2O3–δ-m0.2Ce0.8O2–δ bulk heterostructure composite: A cobalt free Oxygen Reduction Electrocatalyst for low-temperature SOFCs, Int. J. Hydrogen Energy, 47(2022), No. 90, p. 38348.

    Article  CAS  Google Scholar 

  46. Y.Z. Lu, J.J. Li, L.G. Ma, Z.H. Lu, L. Yu, and Y.X. Cai, The development of semiconductor-ionic conductor composite electrolytes for fuel cells with symmetrical electrodes, Int. J. Hydrogen Energy, 46(2021), No. 15, p. 9835.

    Article  CAS  Google Scholar 

  47. Y.X. Cao, Z.W. Zhu, Y.J. Zhao, W. Zhao, Z.L. Wei, and T. Liu, Development of tungsten stabilized SrFe0.8W0.2O3–δ material as novel symmetrical electrode for solid oxide fuel cells, J. Power Sources, 455(2020), art. No. 227951.

  48. H.Z. Lv, Q. Pan, Y. Song, X.X. Liu, and T.Y. Liu, A review on nano-/microstructured materials constructed by electrochemical technologies for supercapacitors, Nano Micro Lett., 12(2020), No. 1, p. 1.

    Article  Google Scholar 

  49. J.V. Reis, T.C.P. Pereira, T.H.A. Teles, et al., Synthesis of CeNb3O9 perovskite by pechini method, Mater. Lett., 227(2018), p. 261.

    Article  CAS  Google Scholar 

  50. Y.X. Chen, S.L. Luo, J. Leng, et al., Exploring the synthesis conditions and formation mechanisms of Li-rich layered oxides via solid-state method, J. Alloys Compd., 854(2021), art. No. 157204.

  51. S.Q. Zhao, Z.Q. Guo, K. Yan, et al., Towards high-energy-density lithium-ion batteries: Strategies for developing high-capacity lithium-rich cathode materials, Energy Storage Mater., 34(2021), p. 716.

    Article  Google Scholar 

  52. Y.L. Gao, Z.H. Pan, J.G. Sun, Z.L. Liu, and J. Wang, High-energy batteries: Beyond lithium-ion and their long road to commercialisation, Nanomicro Lett., 14(2022), No. 1, art. No. 94.

  53. B. Zhu, R. Raza, H.Y. Qin, and L.D. Fan, Single-component and three-component fuel cells, J. Power Sources, 196(2011), No. 15, p. 6362.

    Article  CAS  Google Scholar 

  54. H.Q. Hu, Q.Z. Lin, Z.G. Zhu, B. Zhu, and X.R. Liu, Fabrication of electrolyte-free fuel cell with Mg0.4Zn0.6O/Ce0.8Sm0.2 O2–δ-Li0.3Ni0.6Cu0.07Sr0.03O2–δ layer, J. Power Sources, 248(2014), p. 577.

    Article  CAS  Google Scholar 

  55. K. Lin, X.F. Xu, X.Y. Qin, et al., Commercially viable hybrid Li-ion/metal batteries with high energy density realized by symbiotic anode and prelithiated cathode, Nano Micro Lett., 14(2022), art. No. 149.

  56. P. Mukherjee, N.V. Faenza, N. Pereira, et al., Surface structural and chemical evolution of layered LiNi0.8Co0.15Al0.05O2 (NCA) under high voltage and elevated temperature conditions, Chem. Mater., 30(2018), No. 23, p. 8431.

    Article  CAS  Google Scholar 

  57. T.P. Gao, K.W. Wong, and K.M. Ng, High-quality LiNi0.8Co0.15Al0.05O2 cathode with excellent structural stability: Suppressed structural degradation and pore defects generation, Nano Energy, 73(2020), p. 104798.

    Article  CAS  Google Scholar 

  58. Y. Makimura, S.J. Zheng, Y. Ikuhara, and Y. Ukyo, Micro-structural observation of LiNi0.8Co0.15Al0.05O2 after charge and discharge by scanning transmission electron microscopy, J. Electrochem. Soc., 159(2012), No. 7, p. A1070.

    Article  CAS  Google Scholar 

  59. A.S. Bagishev, D.V. Maslennikov, M.P. Popov, and A.P. Nemudry, A study of the influence of Li-containing additives in microtubular SOFC components based on Gd-doped ceria on the effectiveness of the co-firing method, Mater. Today, 25(2020), p. 464.

    Article  CAS  Google Scholar 

  60. J.J. Xu, Critical review on cathode-electrolyte interphase toward high-voltage cathodes for Li-ion batteries, Nano Micro Lett., 14(2022), art. No. 166

  61. M.H. Yuan, W.J. Dong, L.L. Wei, et al., Stability study of SOFC using layered perovskite oxide La1.85Sr0.15CuO4 mixed with ionic conductor as membrane, Electrochim. Acta, 332(2020), art. No. 135487.

  62. E. Thauer, G.S. Zakharova, S.A. Wegener, Q. Zhu, and R. Klingeler, Sol-gel synthesis of Li3VO4/C composites as anode materials for lithium-ion batteries, J. Alloys Compd., 853(2021), art. No. 157364.

  63. Y.X. Jiang, L.Y. Chai, D.H. Zhang, et al., Facet-controlled LiMn2O4/C as deionization electrode with enhanced stability and high desalination performance, Nano Micro Lett., 14(2022), No. 1, art. No. 176.

  64. D.L. Ma, Z.Y. Cao, and A.M. Hu, Si-based anode materials for Li-ion batteries: A mini review, Nano Micro Lett., 6(2014), No. 4, p. 347.

    Article  Google Scholar 

  65. A. U. Rehman, M.R. Li, R. Knibbe, M.S. Khan, W. Zhou, and Z.H. Zhu, Unveiling lithium roles in cobalt-free cathodes for efficient oxygen reduction reaction below 600°C, ChemElectroChem, 6(2019), No. 20, p. 5340.

    Article  CAS  Google Scholar 

  66. X.B. Zhang, G. Chen, Y. He, L.L. Zhang, D. Yang, and S.J. Geng, Effect of Li2CO3 and LiOH on the ionic conductivity of BaCe0.9Y0.1O3 electrolyte in SOFCs with a lithium compound electrode, Int. J. Hydrogen Energy, 46(2021), No. 15, p. 9948.

    Article  CAS  Google Scholar 

  67. Y. He, G. Chen, X.B. Zhang, et al., Mechanism for major improvement in SOFC electrolyte conductivity when using lithium compounds as anode, ACS Appl. Energy Mater., 3(2020), No. 5, p. 4134.

    Article  CAS  Google Scholar 

  68. L.D. Fan and P.C. Su, Layer-structured LiNi0.8Co0.2O2: A new triple (H+/O2−/e) conducting cathode for low temperature proton conducting solid oxide fuel cells, J. Power Sources, 306(2016), p. 369.

    Article  CAS  Google Scholar 

  69. W.Y. Tan, L.D. Fan, R. Raza, M.A. Khan, and B. Zhu, Studies of modified lithiated NiO cathode for low temperature solid oxide fuel cell with ceria-carbonate composite electrolyte, Int. J. Hydrogen Energy, 38(2013), No. 1, p. 370.

    Article  CAS  Google Scholar 

  70. G. Chen, H.L. Liu, Y. He, et al., Electrochemical mechanisms of an advanced low-temperature fuel cell with a SrTiO3 electrolyte, J. Mater. Chem. A, 7(2019), No. 16, p. 9638.

    Article  CAS  Google Scholar 

  71. W.W. Fan, Z. Sun, J.K. Wang, J. Zhou, K. Wu, and Y.H. Cheng, Evaluation of Sm0.95Ba0.05Fe0.95Ru0.05O3 as a potential cathode material for solid oxide fuel cells, RSC Adv., 6(2016), No. 41, p. 34564.

    Article  CAS  Google Scholar 

  72. C.G. Moura, J.P. de F. Grilo, D.A. Macedo, M.R. Cesário, D.P. Fagg, and R.M. Nascimento, Cobalt-free perovskite Pr0.5Sr0.5Fe1–xCuxO3–δ (PSFC) as a cathode material for intermediate temperature solid oxide fuel cells, Mater. Chem. Phys., 180(2016), p. 256.

    Article  CAS  Google Scholar 

  73. X.B. Huang, J. Feng, H.R.S. Abdellatif, J. Zou, G. Zhang, and C.S. Ni, Electrochemical evaluation of double perovskite PrBaCo2–xMnxO5+δ (x = 0, 0.5, 1) as promising cathodes for IT-SOFCs, Int. J. Hydrogen Energy, 43(2018), No. 18, p. 8962.

    Article  CAS  Google Scholar 

  74. Y.B. He, F. Ning, Q.H. Yang, et al., Structural and thermal stabilities of layered Li(Ni1/3Co1/3Mn1/3)O2 materials in 18650 high power batteries, J. Power Sources, 196(2011), No. 23, p. 10322.

    Article  CAS  Google Scholar 

  75. X.Q. Liu, W.J. Dong, Y.Z. Tong, et al., Li effects on layer-structured oxide LixNi0.8Co0.15Al0.05O2–δ: Improving cell performance via on-line reaction, Electrochim. Acta, 295(2019), p. 325.

    Article  CAS  Google Scholar 

  76. K. Wang, D. Zheng, H.D. Cai, et al., Rational design of favourite lithium-ion cathode materials as electrodes for symmetrical solid oxide fuel cells, Ceram. Int., 47(2021), No. 21, p. 30536.

    Article  CAS  Google Scholar 

  77. G.L. Wang, J.Z. Wu, S. Li, et al., Effect of the online reaction byproducts of LiNi0.8Co0.15Al0.05O2–δ electrodes on the performance of solid oxide fuel cells, Int. J. Hydrogen Energy, 47(2022), No. 79, p. 33850.

    Article  CAS  Google Scholar 

  78. X.F. Luo, X.Y. Wang, L. Liao, X.M. Wang, S. Gamboa, and P.J. Sebastian, Effects of synthesis conditions on the structural and electrochemical properties of layered Li[Ni1/3Co1/3Mn1/3]O2 cathode material via the hydroxide co-precipitation method LIB SCITECH, J. Power Sources, 161(2006), No. 1, p. 601.

    Article  CAS  Google Scholar 

  79. E.Y. Hu, Z. Jiang, L.D. Fan, et al., Junction and energy band on novel semiconductor-based fuel cells, iScience, 24(2021), No. 3, p. 102191.

    Article  CAS  Google Scholar 

  80. S.M. Baba, N. Ohguri, Y. Suzuki, and K. Murakami, Evaluation of a variable flow ejector for anode gas circulation in a 50-kW class SOFC, Int. J. Hydrogen Energy, 45(2020), No. 19, p. 11297.

    Article  CAS  Google Scholar 

  81. P. Li, Q.Y. Yang, H. Zhang, M.X. Yao, F. Yan, and D. Fu, Effect of Fe, Ni and Zn dopants in La0.9Sr0.1CoO3 on the electrochemical performance of single-component solid oxide fuel cell, Int. J. Hydrogen Energy, 45(2020), No. 20, p. 11802.

    Article  CAS  Google Scholar 

  82. D. Zheng, X.M. Zhou, Z.L. He, et al., LiNi-oxide simultaneously as electrolyte and symmetrical electrode for low-temperature solid oxide fuel cell, Int. J. Hydrogen Energy, 47(2022), No. 63, p. 27177.

    Article  CAS  Google Scholar 

  83. M.V. Sandoval, C. Cárdenas, E. Capoen, C. Pirovano, P. Roussel, and G.H. Gauthier, Performance of La0.5Sr1.5MnOδ Ruddlesden–Popper manganite as electrode material for symmetrical solid oxide fuel cells. Part A. The oxygen reduction reaction, Electrochim. Acta, 304(2019), p. 415.

    Article  CAS  Google Scholar 

  84. G. Chen, Y. Gao, Y.F. Luo, and R.F. Guo, Effect of A site deficiency of LSM cathode on the electrochemical performance of SOFCs with stabilized zirconia electrolyte, Ceram. Int., 43(2017), No. 1, p. 1304.

    Article  CAS  Google Scholar 

  85. J.K. Wang, J. Zhou, J.M. Yang, et al., Nanoscale architecture of (La0.6Sr1.4)0.95Mn0.9B0.1O4 (B=Co, Ni, Cu) Ruddlesden-Popper oxides as efficient and durable catalysts for symmetrical solid oxide fuel cells, Renew. Energy, 157(2020), p. 840.

    Article  CAS  Google Scholar 

  86. J. Zhou, N. Wang, J.J. Cui, et al., Structural and electrochemical properties of B-site Ru-doped (La0.8Sr0.2)0.9Sc0.2Mn0.8O3–δ as symmetrical electrodes for reversible solid oxide cells, J. Alloys Compd., 792(2019), p. 1132.

    Article  CAS  Google Scholar 

  87. S. Durán, N. Rangel, C. Silva, et al., Study of La4BaCu5–xM-nxO13+δ materials as potential electrode for symmetrical-SOFC, Solid State Ionics, 341(2019), p. 115031.

    Article  Google Scholar 

  88. W. Yusoff, N.W. Norman, A. Samat, M.R. Somalu, A. Muchtar, and N.A. Baharuddin, Fabrication process of cathode materials for solid oxide fuel cells, J. Adv. Res. Fluid Mech. Therm. Sci., 2(2018), No. 2, p. 153.

    Google Scholar 

  89. S. Paydar, M.H. Shariat, and S. Javadpour, Investigation on electrical conductivity of LSM/YSZ8, LSM/Ce0.84Y0.16O0.96 and LSM/Ce0.42Zr0.42Y0.16O0.96 composite cathodes of SOFCs, Int. J. Hydrogen Energy, 41(2016), No. 48, p. 23145.

    Article  CAS  Google Scholar 

  90. A. Kudryavtsev, S. Lavrov, A. Shestakova, L. Kulyuk, and E. Mishina, Second harmonic generation in nanoscale films of transition metal dichalcogenide: Accounting for multipath interference, AIP Adv., 6(2016), art. No. 095306.

  91. L. Suescun, B. Dabrowski, J. Mais, et al., Oxygen ordered phases in LaxSr1–xMnOy (0≤x≤0.2, 2.5≤y≤3): An in situ neutron powder diffraction study, Chem. Mater., 20(2008), No. 4, p. 1636.

    Article  CAS  Google Scholar 

  92. M.V. Sandoval, C. Pirovano, E. Capoen, et al., In-depth study of the Ruddlesden-Popper LaxSr2–xMnO3–δ family as possible electrode materials for symmetrical SOFC, Int. J. Hydrogen Energy, 42(2017), No. 34, art. No. 21930.

  93. M. Al Daroukh, V.V. Vashook, H. Ullmann, F. Tietz, and I. Arual Raj, Oxides of the AMO3 and A2MO4-type: Structural stability, electrical conductivity and thermal expansion, Solid State Ionics, 158(2003), No. 1–2, p. 141.

    Article  CAS  Google Scholar 

  94. E. Lay, G. Gauthier, and L. Dessemond, Preliminary studies of the new Ce-doped La/Sr chromo-manganite series as potential SOFC anode or SOEC cathode materials, Solid State Ionics, 189(2011), No. 1, p. 91.

    Article  CAS  Google Scholar 

  95. E. Gager, M. Frye, D.C. McCord, J. Scheffe, and J. Nino, Reticulated porous lanthanum strontium manganite structures for solar thermochemical hydrogen production, Int. J. Hydrogen Energy, 47(2022), No. 73, p. 31152.

    Article  CAS  Google Scholar 

  96. Z.K. Zhu, M. Sugimoto, U. Pal, S. Gopalan, and S. Basu, Multiple cycle chromium poisoning and in-situ electrochemical cleaning of LSM-based solid oxide fuel cell cathodes, J. Power Sources Adv., 6(2020), art. No. 100037.

  97. D. Garcés, A.L. Soldati, H. Troiani, A. Montenegro-Hernández, A. Caneiro, and L.V. Mogni, La/Ba-based co-baltites as IT-SOFC cathodes: A discussion about the effect of crystal structure and microstructure on the O2-reduction reaction, Electrochim. Acta, 215(2016), p. 637.

    Article  Google Scholar 

  98. J.S. Hardy, C.A. Coyle, J.F. Bonnett, et al., Evaluation of cation migration in lanthanum strontium cobalt ferrite solid oxide fuel cell cathodes via in-operando X-ray diffraction, J. Mater. Chem. A, 6(2018), No. 4, p. 1787.

    Article  CAS  Google Scholar 

  99. N.A. Baharuddin, A. Muchtar, M.R. Somalu, and A.A. Samat, Thermal decomposition of cobalt free SrFe0.9Ti0.1O3+δ cathode for intermediate temperature solid oxide fuel cell, Procedia Eng., 148(2016), p. 72.

    Article  CAS  Google Scholar 

  100. F.F. Dong, Y.B. Chen, D.J. Chen, and Z.P. Shao, Surprisingly high activity for oxygen reduction reaction of selected oxides lacking long oxygen-ion diffusion paths at intermediate temperatures: A case study of cobalt-free BaFeO3–δ, ACS Appl. Mater. Interfaces, 6(2014), No. 14, p. 11180.

    Article  CAS  Google Scholar 

  101. G.M. Yang, J. Shen, Y.B. Chen, M.O. Tadé, and Z.P. Shao, Cobalt-free Ba0.5Sr0.5Fe0.8Cu0.1Ti0.1O3–δ as a bi-functional electrode material for solid oxide fuel cells, J. Power Sources, 298(2015), p. 184.

    Article  CAS  Google Scholar 

  102. W. Jung and H.L. Tuller, A new model describing solid oxide fuel cell cathode kinetics: Model thin film SrTi1–xFexO3–δ mixed conducting oxides-A case study, Adv. Energy Mater., 1(2011), No. 6, p. 1184.

    Article  CAS  Google Scholar 

  103. J. Zamudio-García, L. dos Santos-Gómez, J.M. Porras-Vázquez, E.R. Losilla, and D. Marrero-López, Symmetrical solid oxide fuel cells based on titanate nanocomposite electrodes, J. Eur. Ceram. Soc., 43(2023), No. 4, p. 1548.

    Article  Google Scholar 

  104. X. Chen, C.C. Kou, X.J. Liao, et al., Plasma-sprayed lanthanum-doped strontium titanate as an interconnect for solid oxide fuel cells: Effects of powder size and process conditions, J. Alloys Compd., 876(2021), art. No. 160212.

  105. H. Miao, B. Chen, X. Wu, Q. Wang, P. Lin, J. Wang, C. Yang, H. Zhang, and J. Yuan, Optimizing strontium titanate anode in solid oxide fuel cells by ytterbium doping, Int. J. Hydrogen Energy, 44(2019), No. 26, p. 13728.

    Article  CAS  Google Scholar 

  106. R.P. Li, C. Zhang, J.H. Liu, J.W. Zhou, and L. Xu, A review on the electrical properties of doped SrTiO3 as anode materials for solid oxide fuel cells, Mater. Res. Express, 6(2019), No. 10, art. No. 102006.

  107. D. Dogu, S. Gunduz, K.E. Meyer, D.J. Deka, A.C. Co, and U.S. Ozkan, CO2 and H2O electrolysis using solid oxide electrolyzer cell (SOEC) with La and Cl-doped strontium titanate cathode, Catal. Lett., 149(2019), No. 7, p. 1743.

    Article  CAS  Google Scholar 

  108. M.A. Yatoo and S.J. Skinner, Ruddlesden-Popper phase materials for solid oxide fuel cell cathodes: A short review, Mater. Today, 56(2022), p. 3747.

    Article  CAS  Google Scholar 

  109. A. Ndubuisi, S. Abouali, K. Singh, and V. Thangadurai, Recent advances, practical challenges, and perspectives of intermediate temperature solid oxide fuel cell cathodes, J. Mater. Chem. A, 10(2022), No. 5, p. 2196.

    Article  CAS  Google Scholar 

  110. Z.Y. Han, J.H. Bai, X. Chen, X.F. Zhu, and D.F. Zhou, Novel cobalt-free Pr2Ni1–xNbxO4 (x = 0, 0.05, 0.10, and 0.15) per-ovskite as the cathode material for IT-SOFC, Int. J. Hydrogen Energy, 46(2021), No. 21, p. 11894.

    Article  CAS  Google Scholar 

  111. N. Wu, W. Wang, Y.J. Zhong, G.M. Yang, J.F. Qu, and Z.P. Shao, Nickel-iron alloy nanoparticle-decorated K2NiF4-type oxide as an efficient and sulfur-tolerant anode for solid oxide fuel cells, ChemElectroChem, 4(2017), No. 9, p. 2378.

    Article  CAS  Google Scholar 

  112. Z.Q. Xu, Y.H. Li, Y.H. Wan, S.W. Zhang, and C.R. Xia, Nickel enriched Ruddlesden-Popper type lanthanum strontium manganite as electrode for symmetrical solid oxide fuel cell, J. Power Sources, 425(2019), p. 153.

    Article  CAS  Google Scholar 

  113. S.J. Zhou, Y. Yang, H. Chen, and Y.H. Ling, in situ exsolved Co-Fe nanoparticles on the Ruddlesden-Popper-type symmetric electrodes for intermediate temperature solid oxide fuel cells, Ceram. Int., 46(2020), No. 11, p. 18331.

    Article  CAS  Google Scholar 

  114. L. Fu, J. Zhou, J. Yang, Z. Lian, J. Wang, Y. Cheng, and K. Wu., Exsolution of Cu nanoparticles in (LaSr)0.9Fe0.9Cu0.1O4 Ruddlesden–Popper oxide as symmetrical electrode for solid oxide cells, Appl. Surf. Sci., 511(2020), p. 145525.

    Article  CAS  Google Scholar 

  115. Y. Wang, X.C. Tang, S. Cao, X. Fang, Z.H. Rong, and X. Chen, A novel method to synthesis titanium dioxide(B)/Anata-se composite oxides by solid-state chemical reaction routes for promoting Li+ insertion, Results Phys., 14(2019), art. No. 102451.

  116. O.L. Pineda, Z.L. Moreno, P. Roussel, K. Swierczek, and G.H. Gauthier, Synthesis and preliminary study of the double per-ovskite NdBaMn2O5+δ as symmetric SOFC electrode material, Solid State Ionics, 288(2016), p. 61.

    Article  CAS  Google Scholar 

  117. N. Li, Z. Lü, B. Wei, et al., Characterization of GdBaCo2O5+δ cathode for IT-SOFCs, J. Alloys Compd., 454(2008), No. 1–2, p. 274.

    Article  CAS  Google Scholar 

  118. D.J. Chen, R. Ran, K. Zhang, J. Wang, and Z.P. Shao, Intermediate-temperature electrochemical performance of a poly-crystalline PrBaCo2O5+δ cathode on samarium-doped ceria electrolyte, J. Power Sources, 188(2009), No. 1, p. 96.

    Article  CAS  Google Scholar 

  119. G. Kim, S. Wang, A.J. Jacobson, L. Reimus, P. Brodersen, and C.A. Mims, Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations, J. Mater. Chem., 17(2007), No. 24, p. 2500.

    Article  CAS  Google Scholar 

  120. I.A. Ditenberg, I.V. Smirnov, K.V. Grinyaev, D.A. Osipov, A.I. Gavrilov, and M.A. Korchagin, Morphology, structural-phase state and microhardness of a multicomponent non-equiatomic W–Ta–Mo–Nb–Zr–Cr–Ti powders mixture depending on the duration of ball milling, Adv. Powder Technol., 31(2020), No. 10, p. 4401.

    Article  CAS  Google Scholar 

  121. A.V. Syugaev, K.A. Yazovskikh, A.A. Shakov, S.F. Lo-mayeva, and A.N. Maratkanova, Molecular transformations in interfaces and liquid media under wet ball milling of iron with N-phenylanthranilic acid, Colloids Surf. A, 608(2021), art. No. 125620.

  122. H.B. Li, J. He, Q.Q. Sun, and S. Wang, Effect of the environment on the morphology of Ni powder during high-energy ball milling, Mater. Today Commun., 25(2020), art. No. 101288.

  123. K. Ponhan, K. Tassenberg, D. Weston, K.G.M. Nicholls, and R. Thornton, Effect of SiC nanoparticle content and milling time on the microstructural characteristics and properties of Mg–SiC nanocomposites synthesized with powder metallurgy incorporating high-energy ball milling, Ceram. Int., 46(2020), No. 17, p. 26956.

    Article  CAS  Google Scholar 

  124. M.Y. Gong, C.L. Liu, J. Gao, A.Z. Du, W.P. Tong, and C.Z. Liu, Magnetic and electromagnetic properties of Fe/Fe2–3N composites prepared by high-energy ball milling, J. Mater. Res. Technol., 9(2020), No. 4, p. 8646.

    Article  CAS  Google Scholar 

  125. P. Sivakumar, R. Ishak, and V. Tricoli, Novel Pt–Ru nano-particles formed by vapour deposition as efficient electrocatalyst for methanol oxidation: Part I. Preparation and physical characterization, Electrochim. Acta, 50(2005), No. 16–17, p. 3312.

    Article  CAS  Google Scholar 

  126. T. L. Simonenko, N. P. Simonenko, A. S. Mokrushin, et al., Microstructural, electrophysical and gas-sensing properties of CeO2−Y2O3 thin films obtained by the sol-gel process, Ceram. Int., 46(2020), No. 1, p. 121.

    Article  Google Scholar 

  127. H. Laysandra, D. Triyono, H.L. Liu, and R.A. Rafsanjani, Systematic study of phase-formation and lattice structure of La0.9Sr0.1Fe1–xMoxO3 synthesized through the sol–gel method, Ceram. Int., 46(2020), No. 7, p. 9751.

    Article  CAS  Google Scholar 

  128. A.A. Samat, W.N.A. Wan Yusoff, N.W. Norman, M.R. Somalu, and N. Osman, Powder and electrical properties of La0.6Sr0.4CoO3–δg cathode material prepared by a modified sol-gel method for solid oxide fuel cell application, Jurnal Kejuruteraan, 1(2018), No. 2, p. 49.

    Article  Google Scholar 

  129. S.K. Badge and A.V. Deshpande, Study of dielectric and ferroelectric properties of Bismuth Titanate (Bi4Ti3O12) ceramic prepared by sol-gel synthesis and solid state reaction method with varying sintering temperature, Solid State Ionics, 334(2019), p. 21.

    Article  CAS  Google Scholar 

  130. D. Mateos, B. Valdez, J.R. Castillo, et al., Synthesis of high purity nickel oxide by a modified sol-gel method, Ceram. Int., 45(2019), No. 9, p. 11403.

    Article  CAS  Google Scholar 

  131. E.M. Modan and A.G. Plăişsu, Advantages and disadvantages of chemical methods in the elaboration of nanomaterials, Ann. “Dunarea De Jos” Univ. Galati Fascicle IX Metall. Mater. Sci., 43(2020), No. 1, p. 53.

    CAS  Google Scholar 

  132. P.G. Jamkhande, N.W. Ghule, A.H. Bamer, and M.G. Kalaskar, Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications, J. Drug Deliv. Sci. Technol., 53(2019), art. No. 101174.

  133. N.A. Baharuddin, A. Muchtar, and M.R. Somalu, Preparation of SrFe0.5Ti0.5O3–δ perovskite-structured ceramic using the glycine-nitrate combustion technique, Mater. Lett., 194(2017), p. 197.

    Article  CAS  Google Scholar 

  134. T.H.N.G. Amaraweera, D. Senarathna, and A. Wijayasinghe, Synthesis of Li (Ni1/3Mn1/3Co1/3)O2 by Glycine Nitrate combustion process, Ceylon J. Sci., 45(2016), No. 3, art. No. 21.

  135. T. Feng, B.B. Niu, J.C. Liu, and T.M. He, Sr- and Mo-deficiency Sr1.95TiMo1–xO6–δ double perovskites as anodes for solid-oxide fuel cells using H2S-containing syngas, Int. J. Hydrogen Energy, 45(2020), No. 43, p. 23444.

    Article  CAS  Google Scholar 

  136. H.H. Zhao, F.Y. Wang, L.R. Cui, X.Z. Xu, X.J. Han, and Y.C. Du, Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers: A review, Nano Micro Lett., 13(2021), No. 1, p. 1.

    Article  Google Scholar 

  137. S.A. Muhammed Ali, M. Anwar, M.R. Somalu, and A. Muchtar, Enhancement of the interfacial polarization resistance of La0.6Sr0.4Co0.2Fe0.8O3–δ cathode by microwave-assisted combustion method, Ceram. Int., 43(2017), No. 5, p. 4647.

    Article  CAS  Google Scholar 

  138. J.H. Xu, S.B. Wan, Y. Wang, et al., Enhancing performance of molybdenum doped strontium ferrite electrode by surface modification through Ni infiltration, Int. J. Hydrogen Energy, 46(2021), No. 18, p. 10876.

    Article  CAS  Google Scholar 

  139. S. Vafaeenezhad, N. K. Sandhu, A. R. Hanifi, T. H. Etsell, and P. Sarkar, Development of proton conducting fuel cells using nickel metal support, J. Power Sources, 435(2019), art. No. 226763.

  140. P.P. Wu, Y.T. Tian, Z. Lü, X. Zhang, and L.L. Ding, Electrochemical performance of La0.65Sr0.35MnO3 oxygen electrode with alternately infiltrated Sm0.5Sr0.5CoO3–δ and Sm0.2Ce0.8O1.9 nanoparticles for reversible solid oxide cells, Int. J. Hydrogen Energy, 47(2022), No. 2, p. 747.

    Article  CAS  Google Scholar 

  141. Q.M. Liu, S.Z. Huang, and A.J. He, Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aeroengines, J. Mater. Sci. Technol., 35(2019), No. 12, p. 2814.

    Article  CAS  Google Scholar 

  142. Y. Liu, X.Q. Han, Q. Huang, et al., Structural damage response of lanthanum and yttrium aluminate crystals to nuclear collisions and electronic excitation: Threshold assessment of irradiation damage, J. Mater. Sci. Technol., 90(2021), p. 95.

    Article  CAS  Google Scholar 

  143. T.Z. Wu, Y.Q. Zhao, R.R. Peng, and C.R. Xia, Nano-sized Sm0.5Sr0.5CoO3–δ as the cathode for solid oxide fuel cells with proton-conducting electrolytes of BaCe0.8Sm0.2O2.9, Electrochim. Acta, 54(2009), No. 21, p. 4888.

    Article  CAS  Google Scholar 

  144. S. Abdul, W. Yusoff, N. Baharuddin, M. Somalu, A. Muchtar, and N. Osman, Electrochemical performance of sol-gel derived La0.6S0.4CoO3–δ cathode material for proton-conducting fuel cell: A comparison between simple and advanced cell fabrication techniques, Process. Appl. Ceram., 12(2018), No. 3, p. 277.

    Article  Google Scholar 

  145. L.M. Ding, L.X. Wang, D. Ding, S.H. Zhang, X.F. Ding, and G.L. Yuan, Promotion on electrochemical performance of a cation deficient SrCo0.7Nb0.1Fe0.2O3–δ perovskite cathode for intermediate-temperature solid oxide fuel cells, J. Power Sources, 354(2017), p. 26.

    Article  CAS  Google Scholar 

  146. X.J. Liu, D. Han, H. Wu, X. Meng, F.R. Zeng, and Z.L. Zhan, Mn1.5Co1.5O4–δ infiltrated yttria stabilized zirconia composite cathodes for intermediate-temperature solid oxide fuel cells, Int. J. Hydrogen Energy, 38(2013), No. 36, p. 16563.

    Article  CAS  Google Scholar 

  147. F. Bidrawn, G. Kim, G. Corre, J.T.S. Irvine, J.M. Vohs, and R.J. Gorte, Efficient reduction of CO2 in a solid oxide electrolyzer, Electrochem. Solid State Lett., 11(2008), No. 9, p. 167.

    Article  Google Scholar 

  148. X.L. Yue and J.T.S. Irvine, Alternative cathode material for CO2Reduction by high temperature solid oxide electrolysis cells, J. Electrochem. Soc., 159(2012), No. 8, p. F442.

    Article  CAS  Google Scholar 

  149. Y.Q. Yu, L.X. Yu, K. Shao, et al., BaZr0.1Co0.4Fe0.4Y0.1O3-SDC composite as quasi-symmetrical electrode for proton conducting solid oxide fuel cells, Ceram. Int., 46(2020), No. 8, p. 11811.

    Article  CAS  Google Scholar 

  150. J. Xu, X.L. Zhou, L. Pan, M.X. Wu, and K.N. Sun, Oxide composite of La0.3Sr0.7Ti0.3Fe0.7O3–δ and CeO2 as an active fuel electrode for reversible solid oxide cells, J. Power Sources, 371(2017), p. 1.

    Article  CAS  Google Scholar 

  151. M.K. Hossain, R. Chanda, A. El-Denglawey, et al., Recent progress in Barium zirconate proton conductors for electrochemical hydrogen device applications: A review, Ceram. Int., 47(2021), No. 17, p. 23725.

    Article  CAS  Google Scholar 

  152. H.F. Lv, L. Lin, X.M. Zhang, et al., Promoting exsolution of RuFe alloy nanoparticles on Sr2Fe1.4Ru0.1Mo0.5O6–δ via repeated redox manipulations for CO2 electrolysis, Nat. Commun., 12(2021), No. 1, art. No. 5665.

  153. G.S. Kim, B.Y. Lee, G. Accardo, H.C. Ham, J. Moon, and S.P. Yoon, Improved catalytic activity under internal reforming solid oxide fuel cell over new rhodium-doped perovskite catalyst, J. Power Sources, 423(2019), p. 305.

    Article  CAS  Google Scholar 

  154. R. Kannan, K. Singh, S. Gill, T. Fürstenhaupt, and V. Thangadurai, Chemically stable proton conducting doped BaCeO3–δ -No more fear to SOFC wastes, Sci. Rep., 3(2013), art. No. 2138.

  155. D.Q. Liu, Y.N. Dou, T. Xia, et al., B-site La, Ce, and Pr-doped Ba0.5Sr0.5Co0.7Fe0.3O3–δ perovskite cathodes for intermediate-temperature solid oxide fuel cells: Effectively promoted oxygen reduction activity and operating stability, J. Power Sources, 494(2021), art. No. 229778.

  156. W.N.A.W. Yusoff, N.A. Baharuddin, M.R. Somalu, A. Muchtar, and A.A. Samat, A short review on selection of electrodes materials for symmetrical solid oxide fuel cell, IOP Conf. Ser.: Mater. Sci. Eng., 957(2020), No. 1, art. No. 012049.

  157. B. Hołówko, P. Blaszczak, M. Chlipała, et al., Structural and catalytic properties of ceria layers doped with transition metals for SOFCs fueled by biogas, Int. J. Hydrogen Energy, 45(2020), No. 23, p. 12982.

    Article  Google Scholar 

  158. M.H. Shen and P.P. Zhang, Progress and challenges of cathode contact layer for solid oxide fuel cell, Int. J. Hydrogen Energy, 45(2020), No. 58, p. 33876.

    Article  CAS  Google Scholar 

  159. M. V. Sandoval, C. Cardenas, E. Capoen, P. Roussel, C. Pirovano, and G. H. Gauthier, Performance of La0.5Sr1.5MnOδ Ruddlesden–Popper manganite as electrode material for symmetrical solid oxide fuel cells. Part B. the hydrogen oxidation reaction, Electrochim. Acta, 353(2020), art. No. 136494.

  160. S. Molin, J. Karczewski, B. Kamecki, A. Mrozinski, S.F. Wang, and P. Jasinski, Processing of Ce0.8Gd0.2O2–δ barrier layers for solid oxide cells: The effect of preparation method and thickness on the interdiffusion and electrochemical performance, J. Eur. Ceram. Soc., 40(2020), No. 15, p. 5626.

    Article  CAS  Google Scholar 

  161. D. Ramasamy, N. Nasani, D. Pukazhselvan, and D.P. Fagg, Increased performance by use of a mixed conducting buffer layer, terbia-doped ceria, for Nd2NiO4+δ SOFC/SOEC oxygen electrodes, Int. J. Hydrogen Energy, 44(2019), No. 59, p. 31466.

    Article  CAS  Google Scholar 

  162. X.Y. Chen, W.J. Ni, X.J. Du, et al., Electrochemical property of multi-layer anode supported solid oxide fuel cell fabricated through sequential tape-casting and co-firing, J. Mater. Sci. Technol., 35(2019), No. 4, p. 695.

    Article  Google Scholar 

  163. W.N.A. Wan Yusoff, N.N.M. Tahir, N.A. Baharuddin, M.R. Somalu, A. Muchtar, and L.J. Wei, Effects of roller speed on the structural and electrochemical properties of LiCo0.6Sr0.4O2 cathode for solid oxide fuel cell application, Sustain. Energy Technol. Assess., 56(2023), art. No. 103096.

  164. P. Jasinski, S. Molin, M. Gazda, V. Petrovsky, and H.U. Anderson, Applications of spin coating of polymer precursor and slurry suspensions for solid oxide fuel cell fabrication, J. Power Sources, 194(2009), No. 1, p. 10.

    Article  CAS  Google Scholar 

  165. M. Chen, J.L. Luo, K.T. Chuang, and A.R. Sanger, Fabrication and electrochemical properties of cathode-supported solid oxide fuel cells via slurry spin coating, Electrochim. Acta, 63(2012), p. 277.

    Article  CAS  Google Scholar 

  166. E. Lay, L. Dessemond, and G. Gauthier, Ba-substituted LSCM anodes for solid oxide fuel cells, J. Power Sources, 221(2013), p. 149.

    Article  CAS  Google Scholar 

  167. M.K. Rath, B.G. Ahn, B.H. Choi, M.J. Ji, and K.T. Lee, Effects of manganese substitution at the B-site of lanthanum-rich strontium titanate anodes on fuel cell performance and catalytic activity, Ceram. Int., 39(2013), No. 6, p. 6343.

    Article  CAS  Google Scholar 

  168. J.C. Ruiz-Morales, J. Canales-Vázquez, B. Ballesteros-Pérez, et al., LSCM-(YSZ-CGO) composites as improved symmetrical electrodes for solid oxide fuel cells, J. Eur. Ceram. Soc., 27(2007), No. 13–15, p. 4223.

    Article  CAS  Google Scholar 

  169. J. Lu, Y.M. Yin, J.C. Li, L. Xu, and Z.F. Ma, A cobalt-free electrode material La0.5Sr0.5Fe0.8Cu0.2O3–δ for symmetrical solid oxide fuel cells, Electrochem. Commun., 61(2015), p. 18.

    Article  CAS  Google Scholar 

  170. Y.F. Tian, W.J. Wang, Y. Liu, et al., Cobalt-free perovskite oxide Lao6Sr0.4Fe0.8Ni0.2O3–δ as active and robust oxygen electrode for reversible solid oxide cells, ACS Appl. Energy Mater., 2(2019), No. 5, p. 3297.

    Article  CAS  Google Scholar 

  171. M.V. Sandoval, S. Durán, A. Prada, et al., Synthesis and pre-liminary study of NdxAE2–xMnOδ (AE: Ca, Sr) for symmetrical SOFC electrodes, Solid State Ion., 317(2018), p. 194.

    Article  CAS  Google Scholar 

  172. T.L. Zhu, D.E. Fowler, K.R. Poeppelmeier, M.F. Han, and S.A. Barnett, Hydrogen oxidation mechanisms on perovskite solid oxide fuel cell anodes, J. Electrochem. Soc., 163(2016), No. 8, p. F952.

    Article  CAS  Google Scholar 

  173. C.H. Yang, Z.B. Yang, C. Jin, G.L. Xiao, F.L. Chen, and M.F. Han, Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells, Adv. Mater., 24(2012), No. 11, p. 1439.

    Article  CAS  Google Scholar 

  174. T.H. Shin, Y. Okamoto, S. Ida, and T. Ishihara, Self-recovery of Pd nanoparticles that were dispersed over La(Sr)Fe(Mn)O3 for intelligent oxide anodes of solid-oxide fuel cells, Chem. Eur. J., 18(2012), No. 37, p. 11695.

    Article  CAS  Google Scholar 

  175. Y.M. Xu, Z.H. Lin, W. Wei, et al., Recent progress of electrode materials for flexible perovskite solar cells, Nano Micro Lett., 14(2022), art. No. 117

  176. X.Y. Luo, Y. Yang, Y. Yang, et al., Reduced-temperature redox-stable LSM as a novel symmetrical electrode material for SOFCs, Electrochim. Acta, 260(2018), p. 121.

    Article  CAS  Google Scholar 

  177. W. He, J.C. Fan, H. Zhang, M.N. Chen, Z.M. Sun, and M. Ni, Zr doped BaFeO3–δ as a robust electrode for symmetrical solid oxide fuel cells, Int. J. Hydrogen Energy, 44(2019), No. 60, p. 32164.

    Article  CAS  Google Scholar 

  178. S. Wang, B. Wei, and Z. Lü, Electrochemical performance and distribution of relaxation times analysis of tungsten stabilized La0·5Sr0·5Fe0·9W0·1O3–δ electrode for symmetric solid oxide fuel cells, Int. J. Hydrogen Energy, 46(2021), No. 58, p. 30101.

    Article  CAS  Google Scholar 

  179. M. Bilal, J. Gao, K. Shaheen, et al., Performance evaluation of highly active and novel La0.7Sr0.3Ti0.1Fe0.6Ni0.3O3–δ material both as cathode and anode for intermediate-temperature symmetrical solid oxide fuel cell, J. Power Sources, 472(2020), p. 228498.

    Article  Google Scholar 

  180. H.L. Tao, J.J. Xie, Y.F. Wu, and S.R. Wang, Evaluation of PrNi0.4Fe0.6O3–δ as a symmetrical SOFC electrode material, Int. J. Hydrogen Energy, 43(2018), No. 32, p. 15423.

    Article  CAS  Google Scholar 

  181. B. Admasu Beshiwork, B. Sirak Teketel, X.Y. Luo, et al., Nanoengineering electrode for yttria-stabilized zirconia-based symmetrical solid oxide fuel cells to achieve superior output performance, Sep. Purif. Technol., 295(2022), art. No. 121174.

  182. Y.H. Gu, Y.L. Zhang, Y.F. Zheng, H. Chen, L. Ge, and L.C. Guo, PrBaMn2O5+δ with praseodymium oxide nano-catalyst as electrode for symmetrical solid oxide fuel cells, Appl. Catal., B, 257(2019), p. 117868.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Fundamental Research Grant Scheme (FRGS), grant No. FRGS/1/2021/TK0/ UKM/01/5 funded by the Ministry of Higher Education (MOHE), Malaysia and Universiti Kebangsaan Malaysia for providing facilities and expertise that greatly assisted this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurul Akidah Baharuddin.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yusoff, W.N.A.W., Baharuddin, N.A., Somalu, M.R. et al. Recent advances and influencing parameters in developing electrode materials for symmetrical solid oxide fuel cells. Int J Miner Metall Mater 30, 1933–1956 (2023). https://doi.org/10.1007/s12613-023-2694-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-023-2694-6

Keywords

Navigation