Skip to main content
Log in

Ferric ion-triggered surface oxidation of galena for efficient chalcopyrite-galena separation

  • Research Article
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The efficient separation of chalcopyrite (CuFeS2) and galena (PbS) is essential for optimal resource utilization. However, finding a selective depressant that is environmentally friendly and cost effective remains a challenge. Through various techniques, such as microflotation tests, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM) observation, X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy measurements, this study explored the use of ferric ions (Fe3+) as a selective depressant for galena. The results of flotation tests revealed the impressive selective inhibition capabilities of Fe3+ when used alone. Surface analysis showed that Fe3+ significantly reduced the adsorption of isopropyl ethyl thionocarbamate (IPETC) on the galena surface while having a minimal impact on chalcopyrite. Further analysis using SEM, XPS, and Raman spectra revealed that Fe3+ can oxidize lead sulfide to form compact lead sulfate nanoparticles on the galena surface, effectively depressing IPETC adsorption and increasing surface hydrophilicity. These findings provide a promising solution for the efficient and environmentally responsible separation of chalcopyrite and galena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Guo, B. Feng, J.X. Peng, W.P. Zhang, and X.W. Zhu, Depressant behavior of tragacanth gum and its role in the flotation separation of chalcopyrite from talc, J. Mater. Res. Technol., 8(2019), No. 1, p. 697.

    Article  Google Scholar 

  2. Q. Zhang, S.M. Wen, Q.C. Feng, and H. Wang, Enhanced sulfidization of azurite surfaces by ammonium phosphate and its effect on flotation, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1150.

    Article  CAS  Google Scholar 

  3. J.S. Yu, R.Q. Liu, L. Wang, W. Sun, H. Peng, and Y.H. Hu, Selective depression mechanism of ferric chromium lignin sulfonate for chalcopyrite-galena flotation separation, Int. J. Miner. Metall. Mater., 25(2018), No. 5, p. 489.

    Article  CAS  Google Scholar 

  4. X.M. Qiu, H.Y. Yang, G.B. Chen, S.P. Zhong, C.K. Cai, and B.B. Lan, Inhibited mechanism of carboxymethyl cellulose as a galena depressant in chalcopyrite and galena separation flotation, Miner. Eng., 150(2020), art. No. 106273.

  5. A.A. Nikolaev and B.E. Goryachev, Thermodynamic and flotation analysis of influence exerted by chromate ions on separation of galena and chaclopyrite in alkaline media, J. Min. Sci., 43(2007), No. 6, p. 670.

    Article  Google Scholar 

  6. X. Chen, G.H. Gu, and Z.X. Chen, Seaweed glue as a novel polymer depressant for the selective separation of chalcopyrite and galena, Int. J. Miner. Metall. Mater., 26(2019), No. 12, p. 1495.

    Article  CAS  Google Scholar 

  7. Q. Liu and Y.H. Zhang, Effect of calcium ions and citric acid on the flotation separation of chalcopyrite from galena using dextrin, Miner. Eng., 13(2000), No. 13, p. 1405.

    Article  CAS  Google Scholar 

  8. Z.J. Piao, D.Z. Wei, Z.L. Liu, W.G. Liu, S.L. Gao, and M.Y. Li, Selective depression of galena and chalcopyrite by O,O-bis(2,3-dihydroxypropyl) dithiophosphate, Trans. Nonferrous Met. Soc. China, 23(2013), No. 10, p. 3063.

    Article  CAS  Google Scholar 

  9. J.M. Li, K.W. Song, D.W. Liu, et al., Hydrolyzation and adsorption behaviors of SPH and SCT used as combined depressants in the selective flotation of galena from sphalerite, J. Mol. Liq., 231(2017), p. 485.

    Article  CAS  Google Scholar 

  10. R.Z. Liu, W.Q. Qin, F. Jiao, et al., Flotation separation of chalcopyrite from galena by sodium humate and ammonium persulfate, Trans. Nonferrous Met. Soc. China, 26(2016), No. 1, p. 265.

    Article  Google Scholar 

  11. P. Huang, L. Wang, and Q. Liu, Depressant function of high molecular weight polyacrylamide in the xanthate flotation of chalcopyrite and galena, Int. J. Miner. Process., 128(2014), p. 6.

    Article  CAS  Google Scholar 

  12. P. Huang, M.L. Cao, and Q. Liu, Selective depression of sphalerite by chitosan in differential PbZn flotation, Int. J. Miner. Process., 122(2013), p. 29.

    Article  CAS  Google Scholar 

  13. P. Huang, M.L. Cao, and Q. Liu, Adsorption of chitosan on chalcopyrite and galena from aqueous suspensions, Colloids Surf. A: Physicochem. Eng. Aspects, 409(2012), p. 167.

    Article  CAS  Google Scholar 

  14. A. López-Valdivieso, L.A. Lozano-Ledesma, A. Robledo-Cabrera, and O.A. Orozco-Navarro, Cboboxymethylcellulose (CMC) as PbS depressant in the processing of Pb-Cu bulk concentrates. Adsorption and floatability studies, Miner. Eng., 112(2017), p. 77.

    Article  Google Scholar 

  15. Z.G. Yin, W. Sun, Y.H. Hu, et al., Synthesis of acetic acid-[(hydrazinylthioxomethyl)thio]-sodium and its application on the flotation separation of molybdenite from galena, J. Ind. Eng. Chem., 52(2017), p. 82.

    Article  CAS  Google Scholar 

  16. X.R. Zhang, Z.B. Qian, G.B. Zheng, Y.G. Zhu, and W.G. Wu, The design of a macromolecular depressant for galena based on DFT studies and its application, Miner. Eng., 112(2017), p. 50.

    Article  CAS  Google Scholar 

  17. J.H. Chen, X.H. Long, L.H. Lan, and Q. He, Thermodynamics and density functional theory study of potassium dichromate interaction with galena, Int. J. Miner. Metall. Mater., 21(2014), No. 10, p. 947.

    Article  CAS  Google Scholar 

  18. R.P. Liao, S.M. Wen, Q.C. Feng, J.S. Deng, and H. Lai, Activation mechanism of ammonium oxalate with pyrite in the lime system and its response to flotation separation of pyrite from arsenopyrite, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 271.

    Article  CAS  Google Scholar 

  19. G. Hong, J. Choi, Y. Han, et al., Relationship between surface characteristics and floatability in representative sulfide minerals: Role of surface oxidation, Mater. Trans., 58(2017), No. 7, p. 1069.

    Article  CAS  Google Scholar 

  20. B. Feng, X.K. Jiao, H.H. Wang, J.X. Peng, and G. Yang, Improving the separation of chalcopyrite and galena by surface oxidation using hydroxyethyl cellulose as depressant, Miner. Eng., 160(2021), art. No. 106657.

  21. D.W. Wang, F. Jiao, W.Q. Qin, and X.J. Wang, Effect of surface oxidation on the flotation separation of chalcopyrite and galena using sodium humate as depressant, Sep. Sci. Technol., 53(2018), No. 6, p. 961.

    Article  CAS  Google Scholar 

  22. S.A. Khoso, Y.H. Hu, F. Lü, Y. Gao, R.Q. Liu, and W. Sun, Xanthate interaction and flotation separation of H2O2-treated chalcopyrite and pyrite, Trans. Nonferrous Met. Soc. China, 29(2019), No. 12, p. 2604.

    Article  CAS  Google Scholar 

  23. F. Jiang, L.M. Zhang, T. Yue, et al., Defect-boosted molybdenite-based co-catalytic Fenton reaction, Inorg. Chem. Front., 8(2021), No. 14, p. 3440.

    Article  CAS  Google Scholar 

  24. A.P. Chandra, L. Puskar, D.J. Simpson, and A.R. Gerson, Copper and xanthate adsorption onto pyrite surfaces: Implications for mineral separation through flotation, Int. J. Miner. Process., 114–117(2012), p. 16.

    Article  Google Scholar 

  25. Y.L. Botero, A. Canales-Mahuzier, R. Serna-Guerrero, A. López-Valdivieso, M. Benzaazoua, and L.A. Cisternas, Physical-chemical study of IPETC and PAX collector’s adsorption on covellite surface, Appl. Surf. Sci., 602(2022), art. No. 154232.

  26. P. Forson, W. Skinner, and R. Asamoah, Decoupling pyrite and arsenopyrite in flotation using thionocarbamate collector, Powder Technol., 385(2021), p. 12.

    Article  CAS  Google Scholar 

  27. Y.H. Zhang, Z. Cao, Y.D. Cao, and C.Y. Sun, FTIR studies of xanthate adsorption on chalcopyrite, pentlandite and pyrite surfaces, J. Mol. Struct., 1048(2013), p. 434.

    Article  ADS  CAS  Google Scholar 

  28. K. Laajalehto, J. Leppinen, I. Kartio, and T. Laiho, XPS and FTIR study of the influence of electrode potential on activation of pyrite by copper or lead, Colloids Surf. A: Physicochem. Eng. Aspects, 154(1999), No. 1–2, p. 193.

    Article  CAS  Google Scholar 

  29. B.C. Wu, G.H. Gu, S. Deng, D.H. Liu, and X.X. Xiong, Efficient natural pyrrhotite activating persulfate for the degradation of O-isopropyl-N-ethyl thionocarbamate: Iron recycle mechanism and degradation pathway, Chemosphere, 224(2019), p. 120.

    Article  ADS  CAS  PubMed  Google Scholar 

  30. H. Wang, J.C. Wang, Q.P. Zou, W.Q. Liu, C.Q. Wang, and W.Q. Huang, Surface treatment using potassium ferrate for separation of polycarbonate and polystyrene waste plastics by froth flotation, Appl. Surf. Sci., 448(2018), p. 219.

    Article  ADS  CAS  Google Scholar 

  31. W.Q. Qin, X.J. Wang, L.Y. Ma, et al., Electrochemical characteristics and collectorless flotation behavior of galena: With and without the presence of pyrite, Miner. Eng., 74(2015), p. 99.

    Article  CAS  Google Scholar 

  32. G. De Giudici, A. Rossi, L. Fanfani, and P. Lattanzi, Mechanisms of galena dissolution in oxygen-saturated solutions: Evaluation of pH effect on apparent activation energies and mineral-water interface, Geochim. Cosmochim. Acta, 69(2005), No. 9, p. 2321.

    Article  ADS  CAS  Google Scholar 

  33. Y.L. Mikhlin, A.A. Karacharov, and M.N. Likhatski, Effect of adsorption of butyl xanthate on galena, PbS, and HOPG surfaces as studied by atomic force microscopy and spectroscopy and XPS, Int. J. Miner. Process., 144(2015), p. 81.

    Article  CAS  Google Scholar 

  34. X. Ma, Y. Hu, H. Zhong, S. Wang, G.Y. Liu, and G. Zhao, A novel surfactant S-benzoyl-N,N-diethyldithiocarbamate synthesis and its flotation performance to galena, Appl. Surf. Sci., 365(2016), p. 342.

    Article  ADS  CAS  Google Scholar 

  35. H.Y. Xie, Y.L. Jin, P. Zhang, et al., Surface modification mechanism of galena with H2SO4 and its effect on flotation separation performance, Appl. Surf. Sci., 579(2022), art. No. 152129.

  36. M.F. Liu, C.Y. Zhang, B. Hu, et al., Enhancing flotation separation of chalcopyrite and galena by the surface synergism between sodium sulfite and sodium lignosulfonate, Appl. Surf. Sci., 507(2020), art. No. 145042.

  37. G.K. Parker, R. Woods, and G.A. Hope, Raman investigation of chalcopyrite oxidation, Colloids Surf. A: Physicochem. Eng. Aspects, 318(2008), No. 1–3, p. 160.

    Article  CAS  Google Scholar 

  38. B. Li, L. Huang, M.Z. Zhong, Z.M. Wei, and J.B. Li, Electrical and magnetic properties of FeS2 and CuFeS2 nanoplates, RSC Adv., 5(2015), No. 111, p. 91103.

    Article  ADS  CAS  Google Scholar 

  39. M.D. Lane, Mid-infrared emission spectroscopy of sulfate and sulfate-bearing minerals, Am. Mineral., 92(2007), No. 1, p. 1.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  40. M. Monneron-Gyurits, E. Joussein, A. Courtin-Nomade, et al., A fast one-pot synthesize of crystalline anglesite by hydrothermal synthesis for environmental assessment on pure phase, Environ. Sci. Pollut. Res. Int., 29(2022), No. 12, p. 17373.

    Article  CAS  PubMed  Google Scholar 

  41. B. Han, A.J. Xie, Q.B. Yu, F.Z. Huang, Y.H. Shen, and L. Zhu, Synthesis of PbSO4 crystals by hydrogel template on postprocessing strategy for secondary pollution, Appl. Surf. Sci., 261(2012), p. 623.

    Article  ADS  CAS  Google Scholar 

  42. G. Falgayrac, S. Sobanska, J. Laureyns, and C. Brémard, Heterogeneous chemistry between PbSO4 and calcite micro-particles using Raman microimaging, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 64(2006), No. 5, p. 1095.

    Article  ADS  Google Scholar 

  43. L. Yu, Q.J. Liu, S.M. Li, J.S. Deng, B. Luo, and H. Lai, Depression mechanism involving Fe3+ during arsenopyrite flotation, Sep. Purif. Technol., 222(2019), p. 109.

    Article  CAS  Google Scholar 

  44. P.X. Li, G. Zhang, W.J. Zhao, G. Han, and Q.C. Feng, Interaction mechanism of Fe3+ with smithsonite surfaces and its response to flotation performance, Sep. Purif. Technol., 291(2022), art. No. 121001.

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52204298 and 52004335), the National Key R&D Program of China (Nos. 2022YFC2904502 and 2022YFC2904501), the Major Science and Technology Projects in Yunnan Province (No. 202202AB080012), and the Science Research Initiation Fund of Central South University (No. 202044019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Jiang.

Ethics declarations

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Zhang, L., Jiang, F. et al. Ferric ion-triggered surface oxidation of galena for efficient chalcopyrite-galena separation. Int J Miner Metall Mater 31, 261–267 (2024). https://doi.org/10.1007/s12613-023-2674-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-023-2674-x

Keywords

Navigation