Skip to main content
Log in

TiO2@NH2-MIL-125(Ti) composite derived from a partial-etching strategy with enhanced carriers’ transfer for the rapid photocatalytic Cr(VI) reduction

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Metal-organic frameworks (MOFs)-based composites have been widely applied as photocatalysts because of their synergistic effect between the two individual component. Herein, TiO2@NH2-MIL-125(Ti) nanocomposites which possess unsaturated titanium—oxo clusters, mesoporous structure, and intimate interface were successfully constructed via an in-situ distilled water-etched route. The X-ray photoelectron spectroscopy (XPS) measurements indicated strong electronic interaction between TiO2 and NH2-MIL-125(Ti), confirming the formation of TiO2@NH2-MIL-125(Ti) nanocomposite. Photoelectrochemical and thermodynamics measurements showed that TiO2@NH2-MIL-125(Ti) nanocomposites have improved charge separation efficient and decreased transfer resistance of the carriers within the heterojunction interfaces, which facilitates the photoexcited electrons transfer and reduction of the Cr(VI) species. Therefore, the optimal TiO2@NH2-MIL-125(Ti) nanocomposite demonstrated superior performance compared to NH2-MIL-125(Ti) and NH2-MIL-125(Ti) derived TiO2. Based on the free radical trapping experiment and electron paramagnetic resonance (EPR) measurements, a possible type-II scheme was proposed for the enhanced photocatalytic activity over the TiO2@NH2-MIL-125(Ti) nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.X. Li, H. Fu, P. Wang, C. Zhao, W. Liu, and C.C. Wang, Porous tube-like ZnS derived from rod-like ZIF-L for photocatalytic Cr(VI) reduction and organic pollutants degradation, Environ. Pollut., 256(2020), art. No. 113417.

  2. J. Geng, F. Gu, and J.M. Chang, Fabrication of magnetic lignosulfonate using ultrasonic-assisted in situ synthesis for efficient removal of Cr(VI) and Rhodamine B from wastewater, J. Hazard. Mater., 375(2019), p. 174.

    Article  CAS  Google Scholar 

  3. W.J. Jiang, M. Pelaez, D.D. Dionysiou, M.H. Entezari, D. Tsoutsou, and K. O’Shea, Chromium(VI) removal by maghemite nanoparticles, Chem. Eng. J., 222(2013), p. 527.

    Article  CAS  Google Scholar 

  4. C.E. Barrera-Díaz, V. Lugo-Lugo, and B. Bilyeu, A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction, J. Hazard. Mater., 223–224(2012), p. 1.

    Article  Google Scholar 

  5. S. Jamshidifard, S. Koushkbaghi, S. Hosseini, et al., Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(II), Cd(II) and Cr(VI) ions from aqueous solutions, J. Hazard. Mater., 368(2019), p. 10.

    Article  CAS  Google Scholar 

  6. S. Wu, X.B. He, L.J. Wang, and K.C. Chou, High Cr(VI) adsorption capacity of rutile titania prepared by hydrolysis of TiCl4 with AlCl3 addition, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1157.

    Article  CAS  Google Scholar 

  7. F. Chen, Q. Yang, Y.L. Wang, et al., Efficient construction of bismuth vanadate-based Z-scheme photocatalyst for simultaneous Cr(VI) reduction and ciprofloxacin oxidation under visible light: Kinetics, degradation pathways and mechanism, Chem. Eng. J., 348(2018), p. 157.

    Article  CAS  Google Scholar 

  8. J.H. Qiu, X.F. Zhang, X.G. Zhang, et al., Constructing Cd0.5Zn0.5S@ZIF-8 nanocomposites through self-assembly strategy to enhance Cr(VI) photocatalytic reduction, J. Hazard. Mater., 349(2018), p. 234.

    Article  CAS  Google Scholar 

  9. Z.P. Cheng, Q. Dong, S. Chen, et al., Novel AgClxBr1−x solid solutions photocatalyst with enhanced photocatalytic activity for reduction of Cr6+ and oxidation of Bisphenol A under simulated sunlight, Mater. Res. Bull., 139(2021), art. No. 111257.

  10. F. Xu, H.M. Chen, C.Y. Xu, et al., Ultra-thin Bi2WO6 porous nanosheets with high lattice coherence for enhanced performance for photocatalytic reduction of Cr(VI), J. Colloid Interface Sci., 525(2018), p. 97.

    Article  CAS  Google Scholar 

  11. H. Furukawa, K.E. Cordova, M. O’Keeffe, and O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science, 341(2013), No. 6149, art. No. 1230444.

  12. M.A. Syzgantseva, C.P. Ireland, F.M. Ebrahim, B. Smit, and O.A. Syzgantseva, Metal substitution as the method of modifying electronic structure of metal-organic frameworks, J. Am. Chem. Soc., 141(2019), No. 15, p. 6271.

    Article  CAS  Google Scholar 

  13. T. Zhang and W.B. Lin, Metal-organic frameworks for artificial photosynthesis and photocatalysis, Chem. Soc. Rev., 43(2014), No. 16, p. 5982.

    Article  CAS  Google Scholar 

  14. M.A. Nasalevich, M. van der Veen, F. Kapteijn, and J. Gascon, Metal-organic frameworks as heterogeneous photocatalysts: Advantages and challenges, CrystEngComm, 16(2014), No. 23, p. 4919.

    Article  CAS  Google Scholar 

  15. S. Naghdi, A. Cherevan, A. Giesriegl, et al., Selective ligand removal to improve accessibility of active sites in hierarchical MOFs for heterogeneous photocatalysis, Nat. Commun., 13(2022), art. No. 282.

  16. A. Corma, H. García, and F.X.L.I. Xamena, Engineering metal organic frameworks for heterogeneous catalysis, Chem. Rev., 110(2010), No. 8, p. 4606.

    Article  CAS  Google Scholar 

  17. H.Q. Xu, J.H. Hu, D.K. Wang, et al., Visible-light photoreduction of CO2 in a metal-organic framework: Boosting electron-hole separation via electron trap states, J. Am. Chem. Soc., 137(2015), No. 42, p. 13440.

    Article  CAS  Google Scholar 

  18. X.L. Chen, S.N. Xiao, H. Wang, et al., MOFs conferred with transient metal centers for enhanced photocatalytic activity, Angew. Chem. Int. Ed., 59(2020), No. 39, p. 17182.

    Article  CAS  Google Scholar 

  19. X. Wang, X.L. Zhang, W. Zhou, L.Q. Liu, J.H. Ye, and D.F. Wang, An ultrathin porphyrin-based metal-organic framework for efficient photocatalytic hydrogen evolution under visible light, Nano Energy, 62(2019), p. 250.

    Article  CAS  Google Scholar 

  20. J. Wang, A.S. Cherevan, C. Hannecart, et al., Ti-based MOFs: New insights on the impact of ligand composition and hole scavengers on stability, charge separation and photocatalytic hydrogen evolution, Appl. Catal. B, 283(2021), art. No. 119626.

  21. S.H. Wu, X.F. Xing, D. Wang, et al., Highly ordered hierarchically macroporous MIL-125 with high specific surface area for photocatalytic CO2 fixation, ACS Sustainable Chem. Eng., 8(2020), No. 1, p. 148.

    Article  CAS  Google Scholar 

  22. Y.X. Li, C.C. Wang, H.F. Fu, and P. Wang, Marigold-flowerlike TiO2/MIL-125 core-shell composite for enhanced photocatalytic Cr(VI) reduction, J. Environ. Chem. Eng., 9(2021), No. 4, art. No. 105451.

  23. L. Li, X.S. Wang, T.F. Liu, and J.H. Ye, Titanium-based MOF materials: From crystal engineering to photocatalysis, Small Methods, 4(2020), No. 12, art. No. 2000486.

  24. G. Wen and Z.G. Guo, Facile modification of NH2-MIL-125(Ti) to enhance water stability for efficient adsorptive removal of crystal violet from aqueous solution, Colloids Surf. A, 541(2018), p. 58.

    Article  CAS  Google Scholar 

  25. S. Hu, M. Liu, K.Y. Li, et al., Solvothermal synthesis of NH2-MIL-125(Ti) from circular plate to octahedron, CrystEgg-Comm, 16(2014), No. 41, p. 9645.

    Article  CAS  Google Scholar 

  26. F. Guo, J.H. Guo, P. Wang, et al., Facet-dependent photocatalytic hydrogen production of metal-organic framework NH2-MIL-125(Ti), Chem. Sci., 10(2019), No. 18, p. 4834.

    Article  CAS  Google Scholar 

  27. G. Capano, F. Ambrosio, S. Kampouri, K.C. Stylianou, A. Pasquarello, and B. Smit, On the electronic and optical properties of metal-organic frameworks: Case study of MIL-125 and MIL-125-NH2, J. Phys. Chem. C, 124(2020), No. 7, p. 4065.

    Article  CAS  Google Scholar 

  28. X.M. Cheng, X.Y. Dao, S.Q. Wang, J. Zhao, and W.Y. Sun, Enhanced photocatalytic CO2 reduction activity over NH2-MIL-125(Ti) by facet regulation, ACS Catal., 11(2021), No. 2, p. 650.

    Article  CAS  Google Scholar 

  29. S. Gao, W.L. Cen, Q. Li, et al., A mild one-step method for enhancing optical absorption of amine-functionalized metal-organic frameworks, Appl. Catal. B, 227(2018), p. 190.

    Article  CAS  Google Scholar 

  30. F. Mohammadnezhad, S. Kampouri, S.K. Wolff, et al., Tuning the optoelectronic properties of hybrid functionalized MIL-125-NH2 for photocatalytic hydrogen evolution, ACS Appl. Mater. Interfaces, 13(2021), No. 4, p. 5044.

    Article  CAS  Google Scholar 

  31. S. Kampouri, T.N. Nguyen, M. Spodaryk, et al., Concurrent photocatalytic hydrogen generation and dye degradation using MIL-125-NH2 under visible light irradiation, Adv. Funct. Mater., 28(2018), No. 52, art. No. 1806368.

  32. Y.W. Sun, Y. Liu, J. Caro, X.W. Guo, C.S. Song, and Y. Liu, In-plane epitaxial growth of highly c-oriented NH2-MIL-125(Ti) membranes with superior H2/CO2 selectivity, Angew. Chem. Int. Ed., 57(2018), No. 49, p. 16088.

    Article  CAS  Google Scholar 

  33. J.H. Qiu, M. Li, H.T. Wang, and J.F. Yao, Integration of plasmonic effect into MIL-125-NH2: An ultra-efficient photocatalyst for simultaneous removal of ternary system pollutants, Chemosphere, 242(2020), art. No. 125197.

  34. V. Muelas-Ramos, C. Belver, J.J. Rodriguez, and J. Bedia, Synthesis of noble metal-decorated NH2-MIL-125 titanium MOF for the photocatalytic degradation of acetaminophen under solar irradiation, Sep. Purif. Technol., 272(2021), art. No. 118896.

  35. Y.C. Zhou, P. Wang, H.F. Fu, C. Zhao, and C.C. Wang, Ternary Ag/Ag3PO4/MIL-125-NH2 Z-scheme heterojunction for boosted photocatalytic Cr(VI) cleanup under visible light, Chin. Chem. Lett., 31(2020), No. 10, p. 2645.

    Article  CAS  Google Scholar 

  36. S.Y. Zhang, M. Du, Z.P. Xing, Z.Z. Li, K. Pan, and W. Zhou, Defect-rich and electron-rich mesoporous Ti-MOFs based NH2-MIL-125(Ti)@ZnIn2S4/CdS hierarchical tandem heterojunctions with improved charge separation and enhanced solar-driven photocatalytic performance, Appl. Catal. B, 262(2020), art. No. 118202.

  37. H. Wang, Q. Zhang, J.J. Li, et al., The covalent Coordination-driven Bi2S3@NH2-MIL-125(Ti)-SH heterojunction with boosting photocatalytic CO2 reduction and dye degradation performance, J. Colloid Interface Sci., 606(2022), p. 1745.

    Article  CAS  Google Scholar 

  38. J. Chen, M.G. Wang, J. Han, and R. Guo, TiO2 nanosheet/NiO nanorod hierarchical nanostructures: p-n heterojunctions towards efficient photocatalysis, J. Colloid Interface Sci., 562(2020), p. 313.

    Article  CAS  Google Scholar 

  39. G.Q. Zhang, X. Yang, C.X. He, P.X. Zhang, and H.W. Mi, Constructing a tunable defect structure in TiO2 for photocatalytic nitrogen fixation, J. Mater. Chem. A, 8(2020), No. 1, p. 334.

    Article  CAS  Google Scholar 

  40. X.G. Han, Q. Kuang, M.S. Jin, Z.X. Xie, and L.S. Zheng, Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties, J. Am. Chem. Soc., 131(2009), No. 9, p. 3152.

    Article  CAS  Google Scholar 

  41. J.F. Chen, X.D. Zhang, F.K. Bi, X.L. Zhang, Y. Yang, and Y.X. Wang, A facile synthesis for uniform tablet-like TiO2/C derived from Materials of Institut Lavoisier-125(Ti) (MIL-125(Ti)) and their enhanced visible light-driven photodegradation of tetracycline, J. Colloid Interface Sci., 571(2020), p. 275.

    Article  CAS  Google Scholar 

  42. L.F. Liu, F.Y. Zhang, J.L. Zhang, et al., Interfacial assembly and hydrolysis for synthesizing a TiO2/metal-organic framework composite, Soft Matter, 13(2017), No. 48, p. 9174.

    Article  CAS  Google Scholar 

  43. Y. Zhang, Z.Y. Zhao, J.R. Chen, et al., C-doped hollow TiO2 spheres: In situ synthesis, controlled shell thickness, and superior visible-light photocatalytic activity, Appl. Catal. B, 165(2015), p. 715.

    Article  CAS  Google Scholar 

  44. H. Lee, H.S. Jang, N.Y. Kim, and J.B. Joo, Cu-doped TiO2 hollow nanostructures for the enhanced photocatalysis under visible light conditions, J. Ind. Eng. Chem., 99(2021), p. 352.

    Article  CAS  Google Scholar 

  45. Q.Q. Liu, J.X. Huang, H. Tang, X.H. Yu, and J. Shen, Construction 0D TiO2 nanoparticles/2D CoP nanosheets heterojunctions for enhanced photocatalytic H2 evolution activity, J. Mater. Sci. Technol., 56(2020), p. 196.

    Article  CAS  Google Scholar 

  46. L.L. Wang, G.G. Tang, S. Liu, et al., Interfacial active-site-rich 0D Co3O4/1D TiO2 p-n heterojunction for enhanced photocatalytic hydrogen evolution, Chem. Eng. J., 428(2022), art. No. 131338.

  47. J. Shen, R. Wang, Q.Q. Liu, X.F. Yang, H. Tang, and J. Yang, Accelerating photocatalytic hydrogen evolution and pollutant degradation by coupling organic co-catalysts with TiO2, Chin. J. Catal., 40(2019), No. 3, p. 380.

    Article  CAS  Google Scholar 

  48. X.Y. Li, Y.H. Pi, Q.Q. Hou, et al., Amorphous TiO2@NH2-MIL-125(Ti) homologous MOF-encapsulated heterostructures with enhanced photocatalytic activity, Chem. Commun., 54(2018), No. 15, p. 1917.

    Article  CAS  Google Scholar 

  49. J.M. Hu, J. Ding, and Q. Zhong, In situ fabrication of amorphous TiO2/NH2-MIL-125(Ti) for enhanced photocatalytic CO2 into CH4 with H2O under visible-light irradiation, J. Colloid Interface Sci., 560(2020), p. 857.

    Article  CAS  Google Scholar 

  50. B.X. Zhang, J.L. Zhang, X.N. Tan, et al., MIL-125-NH2@TiO2 core-shell particles produced by a post-solvothermal route for high-performance photocatalytic H2 production, ACS Appl. Mater. Interfaces, 10(2018), No. 19, p. 16418.

    Article  CAS  Google Scholar 

  51. R. Bibi, H.L. Huang, M. Kalulu, et al., Synthesis of aminofunctionalized Ti-MOF derived yolk-shell and hollow heterostructures for enhanced photocatalytic hydrogen production under visible light, ACS Sustainable Chem. Eng., 7(2019), No. 5, p. 4868.

    Article  CAS  Google Scholar 

  52. M. Zhang, J.N. Chang, Y.F. Chen, et al., Controllable synthesis of COFs-based multicomponent nanocomposites from core—shell to yolk-shell and hollow-sphere structure for artificial photosynthesis, Adv. Mater., 33(2021), No. 48, art. No. 2105002.

  53. L.M. Sun, Y.S. Yuan, F. Wang, Y.L. Zhao, W.W. Zhan, and X.G. Han, Selective wet-chemical etching to create TiO2@MOF frame heterostructure for efficient photocatalytic hydrogen evolution, Nano Energy, 74(2020), p. 104909.

    Article  CAS  Google Scholar 

  54. X.M. Cheng, Y.M. Gu, X.Y. Zhang, et al., Crystallographic facet heterojunction of MIL-125-NH2(Ti) for carbon dioxide photoreduction, Appl. Catal. B, 298(2021), art. No. 120524.

  55. M.A. Nasalevich, M.G. Goesten, T.J. Savenije, F. Kapteijn, and J. Gascon, Enhancing optical absorption of metal-organic frameworks for improved visible light photocatalysis, Chem. Commun., 49(2013), No. 90, p. 10575.

    Article  CAS  Google Scholar 

  56. J.G. Yu, J.X. Low, W. Xiao, P. Zhou, and M. Jaroniec, Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets, J. Am. Chem. Soc., 136(2014), No. 25, p. 8839.

    Article  CAS  Google Scholar 

  57. D.L. Dai, J.H. Qiu, L. Zhang, H. Ma, and J.F. Yao, Aminofunctionalized Ti-metal-organic framework decorated BiOI sphere for simultaneous elimination of Cr(VI) and tetracycline, J. Colloid Interface Sci., 607(2022), p. 933.

    Article  CAS  Google Scholar 

  58. Z.Q. He, J.T. Tang, J. Shen, J.M. Chen, and S. Song, Enhancement of photocatalytic reduction of CO2 to CH4 over TiO2 nanosheets by modifying with sulfuric acid, Appl. Surf. Sci., 364(2016), p. 416.

    Article  CAS  Google Scholar 

  59. P. Karthik, E. Balaraman, and B. Neppolian, Efficient solar light-driven H2 production: Post-synthetic encapsulation of a Cu2O co-catalyst in a metal-organic framework (MOF) for boosting the effective charge carrier separation, Catal. Sci. Technol., 8(2018), No. 13, p. 3286.

    Article  CAS  Google Scholar 

  60. X.S. Wang, C.H. Chen, F. Ichihara, et al., Integration of adsorption and photosensitivity capabilities into a cationic multivariate metal-organic framework for enhanced visible-light photoreduction reaction, Appl. Catal. B, 253(2019), p. 323.

    Article  CAS  Google Scholar 

  61. Y.J. Fu, K.J. Zhang, Y. Zhang, Y.Q. Cong, and Q. Wang, Fabrication of visible-light-active MR/NH2-MIL-125(Ti) homojunction with boosted photocatalytic performance, Chem. Eng. J., 412(2021), art. No. 128722.

  62. V. Chevalier, J. Martin, D. Peralta, A. Roussey, and F. Tardif, Performance of HKUST-1 metal-organic framework for a VOCs mixture adsorption at realistic concentrations ranging from 0.5 to 2.5 ppmv under different humidity conditions, J. Environ. Chem. Eng., 7(2019), No. 3, art. No. 103131.

  63. A. Ishikawa, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, and K. Domen, Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (γ≤650 nm), J. Am. Chem. Soc., 124(2002), No. 45, p. 13547.

    Article  CAS  Google Scholar 

  64. S. Wu, H.T. Yu, S. Chen, and X. Quan, Enhanced photocatalytic H2O2 production over carbon nitride by doping and defect engineering, ACS Catal., 10(2020), No. 24, p. 14380.

    Article  CAS  Google Scholar 

  65. W.C. Cui, J.P. Shang, H.Y. Bai, et al., In-situ implantation of plasmonic Ag into metal-organic frameworks for constructing efficient Ag/NH2-MIL-125/TiO2 photoanode, Chem. Eng. J., 388(2020), art. No. 124206.

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 61204078, 21671059, and 21877027), the Program for Innovative Research Team (in Science and Technology) of Henan Normal University (No. 2022TD03), the Henan Science and Technology Program (No. 21B150005), and the Scientific and Technological Innovation Team of Henan Normal University (No. 2022TD03). The authors would like to thank Yuxiang Wu from Shiyanjia Lab (www.shiyanjia.com) for the EPR measurements and analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuqin Jiang or Dapeng Wu.

Additional information

Conflict of Interest

The authors declare that there are no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

12613_2022_2559_MOESM1_ESM.doc

TiO2@NH2-MIL-125(Ti) composite derived from a partial-etching strategy with enhanced carriers’ transfer for the rapid photocatalytic Cr(VI) reduction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Cao, W., Li, J. et al. TiO2@NH2-MIL-125(Ti) composite derived from a partial-etching strategy with enhanced carriers’ transfer for the rapid photocatalytic Cr(VI) reduction. Int J Miner Metall Mater 30, 630–641 (2023). https://doi.org/10.1007/s12613-022-2559-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2559-4

Keywords

Navigation