Skip to main content
Log in

Kinetics of austenite growth and bainite transformation during reheating and cooling treatments of high strength microalloyed steel produced by sub-rapid solidification

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

First, strip cast samples of high strength microalloyed steel with sub-rapid solidification characteristics were prepared by simulated strip casting technique. Next, the isothermal growth of austenite grain during the reheating treatment of strip casts was observed in situ through confocal laser scanning microscope (CLSM). The results indicated that the time exponent of grains growth suddenly rise when the isothermal temperature higher than 1000°C. And the activation energy for austenite grain growth were calculated to be 538.0 kJ/mol in the high temperature region (above 1000°C) and 693.2 kJ/mol in the low temperature region (below 1000°C), respectively. Then, the kinetics model of austenite isothermal growth was established, which can predict the austenite grain size during isothermal hold very well. Besides, high density of second phase particles with small size was found during the isothermal hold at the low temperature region, leading to the refinement of austenite grain. After isothermal hold at different temperature for 1800 s, the bainite transformation in microalloyed steel strip was also observed in situ during the continuous cooling process. And growth rates of bainite plates with different nucleation positions and different prior austenite grain size (PAGS) were calculated. It was indicated that the growth rate of the bainite plate is not only related to the nucleation position but also to the PAGS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.D. Huo, J.N. Xia, L.J. Li, Z.W. Peng, S.J. Chen, and C.T. Peng, A review of research and development on titanium microalloyed high strength steels, Mater. Res. Express, 5(2018), No. 6, art. No. 062002.

  2. T.N. Baker, Microalloyed steels, Ironmaking Steelmaking, 43(2016), No. 4, p. 264.

    Article  CAS  Google Scholar 

  3. A. Zaitsev and N. Arutyunyan, Low-carbon Ti—Mo microalloyed hot rolled steels: Special features of the formation of the structural state and mechanical properties, Metals, 11(2021), No. 10, art. No. 1584.

  4. Y. Liu, Y.H. Sun, and H.T. Wu, Effects of chromium on the microstructure and hot ductility of Nb-microalloyed steel, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 1011.

    Article  CAS  Google Scholar 

  5. Y.N. Zhao, Z.Q. Ma, L.M. Yu, J. Dong, and Y.C. Liu, The simultaneous improvements of strength and ductility in additive manufactured Ni-based superalloy via controlling cellular sub-grain microstructure, J. Mater. Sci. Technol., 68(2021), p. 184.

    Article  CAS  Google Scholar 

  6. L. Yang, Y. Li, Z.L. Xue, and C.G. Cheng, Effect of different thermal schedules on ductility of microalloyed steel slabs during continuous casting, Metals, 9(2019), No. 1, art. No. 37.

  7. S.K. Giri, T. Chanda, S. Chatterjee, and A. Kumar, Hot ductility of C—Mn and microalloyed steels evaluated for thin slab continuous casting process, Mater. Sci. Technol., 30(2014), No. 3, p. 268.

    Article  CAS  Google Scholar 

  8. J. Zhou, Y.L. Kang, and X.P. Mao, Precipitation characteristic of high strength steels microalloyed with titanium produced by compact strip production, J. Univ. Sci. Technol. Beijing, 15(2008), No. 4, p. 389.

    Article  CAS  Google Scholar 

  9. N. Zapuskalov, Comparison of continuous strip casting with conventional technology, ISIJ Int., 43(2003), No. 8, p. 1115.

    Article  CAS  Google Scholar 

  10. S. Ge, M. Isac, and R.I.L. Guthrie, Progress of strip casting technology for steel; historical developments, ISIJ Int., 52(2012), No. 12, p. 2109.

    Article  CAS  Google Scholar 

  11. S. Ge, M. Isac, and R.I.L. Guthrie, Progress in strip casting technologies for steel; technical developments, ISIJ Int., 53(2013), No. 5, p. 729.

    Article  CAS  Google Scholar 

  12. A. Maleki, A. Taherizadeh, and N. Hosseini, Twin roll casting of steels: An overview, ISIJ Int., 57(2017), No. 1, p. 1.

    Article  CAS  Google Scholar 

  13. J.Y. Heo, M.S. Baek, K.J. Euh, and K.A. Lee, Microstructure, tensile and fatigue properties of Al—5wt.%Mg alloy manufactured by twin roll strip casting, Met. Mater. Int., 24(2018), No. 5, p. 992.

    Article  CAS  Google Scholar 

  14. Y. Kwon, J.H. Hwang, H.C. Choi, et al., Microstructure and tensile properties of ferritic lightweight steel produced by twin-roll casting, Met. Mater. Int., 26(2020), No. 1, p. 75.

    Article  CAS  Google Scholar 

  15. R. Wechsler, The status of twin-roll casting technology, Scand. J. Metall., 32(2003), No. 1, p. 58.

    Article  CAS  Google Scholar 

  16. M. Ferry, Direct Strip Casting of Metals and Alloys, Woodhead Publishing, Cambridge, 2006.

    Book  Google Scholar 

  17. Z.P. Xiong, A.G. Kostryzhev, N.E. Stanford, and E.V. Pereloma, Effect of deformation on microstructure and mechanical properties of dual phase steel produced via strip casting simulation, Mater. Sci. Eng. A, 651(2016), p. 291.

    Article  CAS  Google Scholar 

  18. Z.P. Xiong, A.G. Kostryzhev, N.E. Stanford, and E.V. Pereloma, Microstructures and mechanical properties of dual phase steel produced by laboratory simulated strip casting, Mater. Des., 88(2015), p. 537.

    Article  CAS  Google Scholar 

  19. Z.P. Xiong, A.G. Kostryzhev, A.A. Saleh, L. Chen, and E.V. Pereloma, Microstructures and mechanical properties of TRIP steel produced by strip casting simulated in the laboratory, Mater. Sci. Eng. A, 664(2016), p. 26.

    Article  CAS  Google Scholar 

  20. Z.P. Xiong, A.G. Kostryzhev, L. Chen, and E.V. Pereloma, Microstructure and mechanical properties of strip cast TRIP steel subjected to thermo-mechanical simulation, Mater. Sci. Eng. A, 677(2016), p. 356.

    Article  CAS  Google Scholar 

  21. M.J. Ha, W.S. Kim, H.K. Moon, B.J. Lee, and S. Lee, Analysis and prevention of dent defects formed during strip casting of twin-induced plasticity steels, Metall. Mater. Trans. A, 39(2008), No. 5, p. 1087.

    Article  Google Scholar 

  22. M. Daamen, W. Nessen, P.T. Pinard, S. Richter, A. Schwedt, and G. Hirt, Deformation behavior of high-manganese TWIP steels produced by twin-roll strip casting, Procedia Eng., 81(2014), p. 1535.

    Article  CAS  Google Scholar 

  23. S.L. Shrestha, K.Y. Xie, C. Zhu, et al., Cluster strengthening of Nb-microalloyed ultra-thin cast strip steels produced by the CASTRIP® process, Mater. Sci. Eng. A, 568(2013), p. 88.

    Article  CAS  Google Scholar 

  24. K.Y. Xie, T.X. Zheng, J.M. Cairney, et al., Strengthening from Nb-rich clusters in a Nb-microalloyed steel, Scripta. Mater., 66(2012), No. 9, p. 710.

    Article  CAS  Google Scholar 

  25. L. Xu, J. Shi, W.Q. Cao, M.Q. Wang, W.J. Hui, and H. Dong, Improved mechanical properties in Ti-bearing martensitic steel by precipitation and grain refinement, J. Mater. Sci., 46(2011), No. 19, p. 6384.

    Article  CAS  Google Scholar 

  26. L. Xu, J. Shi, W.Q. Cao, M.Q. Wang, W.J. Hui, and H. Dong, Yield strength enhancement of martensitic steel through titanium addition, J. Mater. Sci., 46(2011), No. 10, p. 3653.

    Article  CAS  Google Scholar 

  27. Y. Han, J. Shi, L. Xu, W.Q. Cao, and H. Dong, Effect of hot rolling temperature on grain size and precipitation hardening in a Ti-microalloyed low-carbon martensitic steel, Mater. Sci. Eng. A, 553(2012), p. 192.

    Article  CAS  Google Scholar 

  28. M.A. Hafeez, A. Farooq, K.B. Tayyab, and M.A. Arshad, Effect of thermomechanical cyclic quenching and tempering treatments on microstructure, mechanical and electrochemical properties of AISI 1345 steel, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 688.

    Article  CAS  Google Scholar 

  29. G.W. Yang, X.J. Sun, Z.D. Li, X.X. Li, and Q.L. Yong, Effects of vanadium on the microstructure and mechanical properties of a high strength low alloy martensite steel, Mater. Des., 50(2013), p. 102.

    Article  CAS  Google Scholar 

  30. G.W. Yang, Z.D. Li, X.J. Sun, X. Yong, and Q.L. Yong, Ultrafine grained austenite in a low carbon vanadium microalloyed steel, J. Iron Steel Res. Int., 20(2013), No. 4, p. 64.

    Article  Google Scholar 

  31. P.A. Manohar, D.P. Dunne, T. Chandra, and C.R. Killmore, Grain growth predictions in microalloyed steels, ISIJ Int., 36(1996), No. 2, p. 194.

    Article  CAS  Google Scholar 

  32. J. Moon, J. Lee, and C. Lee, Prediction for the austenite grain size in the presence of growing particles in the weld HAZ of Timicroalloyed steel, Mater. Sci. Eng. A, 459(2007), No. 1–2, p. 40.

    Article  Google Scholar 

  33. G.W. Yang, X.J. Sun, Q.L. Yong, Z.D. Li, and X.X. Li, Austenite grain refinement and isothermal growth behavior in a low carbon vanadium microalloyed steel, J. Iron Steel Res. Int., 21(2014), No. 8, p. 757.

    Article  CAS  Google Scholar 

  34. Y. Shen, B. Chen, and C. Wang, In situ observation and growth kinetics of bainite laths in the coarse-grained heat-affected zone of 2.25Cr—1Mo heat-resistant steel during simulated welding, Metall. Mater. Trans. A, 52(2021), No. 1, p. 14.

    Article  CAS  Google Scholar 

  35. Z.W. Hu, G. Xu, H.J. Hu, L. Wang, and Z.L. Xue, In situ measured growth rates of bainite plates in an Fe—C—Mn—Si super-bainitic steel, Int. J. Miner. Metall. Mater., 21(2014), No. 4, p. 371.

    Article  CAS  Google Scholar 

  36. P.S. Lyu, W.L. Wang, H.R. Qian, J.C. Wu, and Y. Fang, Formation of naturally deposited film and its effect on interfacial heat transfer during strip casting of martensitic steel, JOM, 72(2020), No. 5, p. 1910.

    Article  CAS  Google Scholar 

  37. P.S. Lyu, W.L. Wang, C.H. Wang, L.J. Zhou, Y. Fang, and J.C. Wu, Effect of sub-rapid solidification and secondary cooling on microstructure and properties of strip cast low-carbon bainitic—martensitic steel, Metall. Mater. Trans. A, 52(2021), No. 9, p. 3945.

    Article  CAS  Google Scholar 

  38. W.L. Wang, H.R. Qian, D.W. Cai, L.J. Zhou, S. Mao, and P.S. Lyu, Microstructure and magnetic properties of 6.5 wt pct Si steel strip produced by simulated strip casting process, Metall. Mater. Trans. A, 52(2021), No. 5, p. 1799.

    Article  CAS  Google Scholar 

  39. S.J. Yao, L.X. Du, X.H. Liu, G.D. Wang, Isothermal growth kinetics of ultra-fine austenite grains in a Nb—V—Ti microalloyed steel, J. Mater. Sci. Technol., 25(2009), No. 5, p. 615.

    CAS  Google Scholar 

  40. H. Hu and B.B. Rath, On the time exponent in isothermal grain growth, Metall. Trans., 1(1970), No. 11, p. 3181.

    Article  Google Scholar 

  41. S. Gündüz and R.C. Cochrane, Influence of cooling rate and tempering on precipitation and hardness of vanadium microalloyed steel, Mater. Des., 26(2005), No. 6, p. 486.

    Article  Google Scholar 

  42. L.J. Li and R.W. Messler, Dissolution kinetics of NbC particles in the heat-affected zone of type 347 austenitic stainless steel, Metall. Mater. Trans. A, 33(2002), No. 7, p. 2031.

    Article  Google Scholar 

  43. F.J. Ma, G.H. Wen, P. Tang, G.D. Xu, F. Mei, and W.L. Wang, Effect of cooling rate on the precipitation behavior of carbonitride in microalloyed steel slab, Metall. Mater. Trans. B, 42(2011), No. 1, p. 81.

    Article  CAS  Google Scholar 

  44. K.Y. Tsai, M.H. Tsai, and J.W. Yeh, Sluggish diffusion in Co—Cr—Fe—Mn—Ni high-entropy alloys, Acta Mater., 61(2013), No. 13, p. 4887.

    Article  CAS  Google Scholar 

  45. S. Uhm, J. Moon, C. Lee, J. Yoon, and B. Lee, Prediction model for the austenite grain size in the coarse grained heat affected zone of Fe—C—Mn steels: Considering the effect of initial grain size on isothermal growth behavior, ISIJ Int., 44(2004), No. 7, p. 1230.

    Article  CAS  Google Scholar 

  46. J.Y. Tian, G. Xu, L. Wang, M.X. Zhou, and H.J. Hu, In situ observation of the lengthening rate of bainite sheaves during continuous cooling process in a Fe—C—Mn—Si superbainitic steel, Trans. Indian Inst. Met., 71(2018), No. 1, p. 185.

    Article  CAS  Google Scholar 

  47. L. Fielding, The bainite controversy, Mater. Sci. Technol., 29(2013), p. 383.

    Article  CAS  Google Scholar 

  48. Z.X. Qiao, Y.C. Liu, L.M. Yu, and Z.M. Gao, Formation mechanism of granular bainite in a 30CrNi3MoV steel, J. Alloys Compd., 475(2009), No. 1–2, p. 560.

    CAS  Google Scholar 

  49. J. Nutter, H. Farahani, W.M. Rainforth, and S. van der Zwaag, Direct TEM observation of α/γ interface migration during cyclic partial phase transformations at intercritical temperatures in an Fe—0.1C −0.5Mn alloy, Acta Mater., 178(2019), p. 68.

    Article  CAS  Google Scholar 

  50. Y.C. Liu, D.J. Wang, F. Sommer, and E.J. Mittemeijer, Isothermal austenite—ferrite transformation of Fe—0.04 at.% C alloy: Dilatometric measurement and kinetic analysis, Acta Mater., 56(2008), No. 15, p. 3833.

    Article  CAS  Google Scholar 

  51. Y.C. Liu, L.F. Zhang, F. Sommer, and E.J. Mittemeijer, Kinetics of martensite formation in substitutional Fe—Al alloys: Dilatometric analysis, Metall. Mater. Trans. A, 44(2013), No. 3, p. 1430.

    Article  CAS  Google Scholar 

  52. X.D. Li, C.J. Shang, X.P. Ma, et al., Elemental distribution in the martensite—austenite constituent in intercritically reheated coarse-grained heat-affected zone of a high-strength pipeline steel, Scripta. Mater., 139(2017), p. 67.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was financially supported from the National Natural Science Foundation of China (No. 52130408), the Hunan Scientific Technology Project, China (Nos. 2019RS3007 and 2020WK2003), and the Fundamental Research Funds for the Central Universities of Central South University, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peisheng Lyu.

Additional information

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Wang, L. & Lyu, P. Kinetics of austenite growth and bainite transformation during reheating and cooling treatments of high strength microalloyed steel produced by sub-rapid solidification. Int J Miner Metall Mater 30, 354–364 (2023). https://doi.org/10.1007/s12613-022-2548-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2548-7

Keywords

Navigation