Skip to main content
Log in

Predicting the alloying element yield in a ladle furnace using principal component analysis and deep neural network

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The composition control of molten steel is one of the main functions in the ladle furnace (LF) refining process. In this study, a feasible model was established to predict the alloying element yield using principal component analysis (PCA) and deep neural network (DNN). The PCA was used to eliminate collinearity and reduce the dimension of the input variables, and then the data processed by PCA were used to establish the DNN model. The prediction hit ratios for the Si element yield in the error ranges of ±1%, ±3%, and ±5% are 54.0%, 93.8%, and 98.8%, respectively, whereas those of the Mn element yield in the error ranges of ±1%, ±2%, and ±3% are 77.0%, 96.3%, and 99.5%, respectively, in the PCA—DNN model. The results demonstrate that the PCA—DNN model performs better than the known models, such as the reference heat method, multiple linear regression, modified backpropagation, and DNN model. Meanwhile, the accurate prediction of the alloying element yield can greatly contribute to realizing a “narrow window” control of composition in molten steel. The construction of the prediction model for the element yield can also provide a reference for the development of an alloying control model in LF intelligent refining in the modern iron and steel industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Liu, Artificial intelligence drives changes in metallurgical industry, Iron Steel, 55(2020), No. 6, p. 1.

    Google Scholar 

  2. J. Li, LF Refining Technology, Metallurgical Industry Press, Beijing, 2012.

    Google Scholar 

  3. P. Yu, D. P. Zhan, Z. H. Jiang, D. L. Li, X. D. Yin, and Z. G. Ma, Development of a terminal composition prediction model for steel refining with ladle furnace, J. Mater. Metall., 5(2006), No. 1, p. 20.

    Google Scholar 

  4. G.B. Li, C.L. Zhao, S.H. Zhao, L.J. Wang, and W.W. Zhang, Development of LF refining composition prediction model, Angang Technol., 2009(4), p. 26.

  5. N.K. Nath, K. Mandal, A.K. Singh, B. Basu, C. Bhanu, S. Kumar, and A. Ghosh, Ladle furnace on-line reckoner for prediction and control of steel temperature and composition, Ironmaking Steelmaking, 33(2006), No. 2, p. 140.

    Article  CAS  Google Scholar 

  6. W.S. Cheng, S.G. Tang, Q.Z. Liu, and M.R. Fei, R&D of the ladle furnace mathematic model, [in] Proceedings of International Conference on Machine Learning and Cybernetics, Beijing, p. 566.

  7. M. Seike, R. Sakao, H. Dei, H. Yamaguchi, T. Muroi, and S. Tsuda, Development of LFV guide control system using the expert system, CAMP-ISIJ, 7(1994), No. 5, p. 1260.

    Google Scholar 

  8. X.W. Gao, A.A. Zhang, and Q.L. Wei, Neural network based prediction of endpoint in ladle refining process, J. Northeast. Univ. Nat. Sci., 26(2005), No. 8, p. 726.

    Google Scholar 

  9. Z. Xu and Z.Z. Mao, Analysis and prediction of influencing factor on element recovery in ladle furnace, Iron Steel, 47(2012), No. 3, p. 34.

    Article  CAS  Google Scholar 

  10. G.B. Huang, Z. Bai, L.L.C. Kasun, and C.M. Vong, Local receptive fields based extreme learning machine, IEEE Comput. Intell. Mag., 10(2015), No. 2, p. 18.

    Article  Google Scholar 

  11. V. N. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, Berlin, 1995.

    Book  Google Scholar 

  12. V. N. Vapnik, Statistical Learning Theory, John Wiley and Sons, New York, 1998.

    Google Scholar 

  13. L. Lin and J.Q. Zeng, Consideration of green intelligent steel processes and narrow window stability control technology on steel quality, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1264.

    Article  Google Scholar 

  14. S.H. Kwon, D.G. Hong, and C.H. Yim, Prediction of hot ductility of steels from elemental composition and thermal history by deep neural networks, Ironmaking Steelmaking, 47(2020), No. 10, p. 1176.

    Article  CAS  Google Scholar 

  15. J.P. Yang, J.S. Zhang, W.D. Guo, S. Gao, and Q. Liu, Endpoint temperature preset of molten steel in the final refining unit based on an integration of deep neural network and multi-process operation simulation, ISIJ Int., 61(2021), No. 7, p. 2100.

    Article  CAS  Google Scholar 

  16. I. Mohanty, R. Banerjee, A. Santara, S. Kundu, and P. Mitra, Prediction of properties over the length of the coil during thermo-mechanical processing using DNN, Ironmaking Steelmaking, 48(2021), No. 8, p. 953.

    Article  CAS  Google Scholar 

  17. S.W. Wu, J. Yang, and G.M. Cao, Prediction of the Charpy V-Notch impact energy of low carbon steel using a shallow neural network and deep learning, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1309.

    Article  CAS  Google Scholar 

  18. Z.C. Xin, J.S. Zhang, J.G. Zhang, Y. Jin, J. Zheng, and Q. Liu, Mathematical modelling and plant trial on slagging regime in a ladle furnace for high-efficiency desulphurization, Ironmaking Steelmaking, 48(2021), No. 9, p. 1123.

    Article  CAS  Google Scholar 

  19. K. Pearson, Mathematical contributions to the theory of evolution. III. regression, heredity, and panmixia, Philos. Trans. R. Soc. London, Ser. A, 187, p. 253.

  20. Z. Zhang, L.L. Cao, W.H. Lin, J.K. Sun, X.M. Feng, and Q. Liu, Improved prediction model for BOF end-point manganese content based on IPSO-RELM method, Chin. J. Eng., 41(2019), No. 8, p. 1052.

    CAS  Google Scholar 

  21. K.X. Zhou, W.H. Lin, J.K. Sun, X.M. Feng, W. Fang, and Q. Liu, A prediction model to calculate Mn yield during BOF alloying process using improved extreme learning machine, J. Cent. South Univ. (Sci. Technol.), 52(2021), No. 5, p. 1399.

    Google Scholar 

  22. S. Valle, W.H. Li, and S.J. Qin, Selection of the number of principal components: The variance of the reconstruction error criterion with a comparison to other methods, Ind. Eng. Chem. Res., 38(1999), No. 11, p. 4389.

    Article  CAS  Google Scholar 

  23. K. Wu, X.Z. Liu, X.X. Zhang, and Y. Miao, Feature extraction of hot strip rolling data based on PCA-DBN, Metall. Ind. Autom., 44(2020), No. 3, p. 21.

    Google Scholar 

  24. Y.L. Huang, Y.F. Liu, H. Huang, and B.L. Zheng, Prediction model of TPC reception iron amount based on PCA-GA-BP, Control Eng. China, 16(2009), No. 4, p. 446.

    Google Scholar 

  25. C. Chen, N. Wang, and M. Chen, Prediction model of end-point phosphorus content in consteel electric furnace based on PCA-extra tree model, ISIJ Int., 61(2021), No. 6, p. 1908.

    Article  CAS  Google Scholar 

  26. Subagyo and G.A. Brooks, Online monitoring of dynamic slag behavior in ladle metallurgy, ISIJ Int., 43(2003), No. 8, p. 1286.

    Article  CAS  Google Scholar 

  27. G.E. Hinton and R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science, 313(2006), No. 5786, p. 504.

    Article  CAS  Google Scholar 

  28. Z. H. Zhou, Machine Learning, Tsinghua University Press, Beijing, 2016.

    Google Scholar 

  29. Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature, 521(2015), No. 7553, p. 436.

    Article  CAS  Google Scholar 

  30. G.W. Song, B.A. Tama, J. Park, J.Y. Hwang, J. Bang, S.J. Park, and S. Lee, Temperature control optimization in a steel-making continuous casting process using a multimodal deep learning approach, Steel Res. Int., 90(2019), No. 12, art. No. 1900321.

  31. C.A. Myers and T. Nakagaki, Prediction of nucleation lag time from elemental composition and temperature for iron and steelmaking slags using deep neural networks, ISIJ Int., 59(2019), No. 4, p. 687.

    Article  CAS  Google Scholar 

  32. S. Feng, H.Y. Zhou, and H.B. Dong, Using deep neural network with small dataset to predict material defects, Mater. Des., 162(2019), p. 300.

    Article  Google Scholar 

  33. M. Ranzato, F.J. Huang, Y.L. Boureau, and Y. LeCun, Unsupervised learning of invariant feature hierarchies with applications to object recognition, [in] 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, p. 1.

  34. S.H. Wang, P. Phillips, Y.X. Sui, B. Liu, M. Yang, and H. Cheng, Classification of Alzheimer’s disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling, J. Med. Syst., 42(2018), No. 85, art. No. 85(2018)

  35. N. Qian, On the momentum term in gradient descent learning algorithms, Neural Netw., 12(1999), No. 1, p. 145.

    Article  CAS  Google Scholar 

  36. I. Loshchilov and F. Hutter, Decoupled weight decay regularization, [in] 7th International Conference on Learning Representations (ICLR), New Orleans, 2019, p. 1.

  37. M.H. Zhao, S.S. Zhong, X.Y. Fu, B.P. Tang, and M. Pecht, Deep residual shrinkage networks for fault diagnosis, IEEE Trans. Ind. Inf., 16(2020), No. 7, p. 4681.

    Article  Google Scholar 

  38. S. Samarasinghe, Neural Networks for Applied Sciences and Engineering, Auerbach Publications, New York, 2006.

    Book  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51974023) and State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing (No. 41621005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiangshan Zhang or Qing Liu.

Additional information

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, Z., Zhang, J., Jin, Y. et al. Predicting the alloying element yield in a ladle furnace using principal component analysis and deep neural network. Int J Miner Metall Mater 30, 335–344 (2023). https://doi.org/10.1007/s12613-021-2409-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2409-9

Keywords

Navigation