Skip to main content
Log in

Effect of Co2+ substitution in B-sites of the perovskite system on the phase formation, microstructure, electrical and magnetic properties of Bi0.5(Na0.68K0.22Li0.10)0.5TiO3 ceramics

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Bi0.5(Na0.68K0.22Li0.10)0.5Ti1−xCoxO3 lead-free perovskite ceramics (BNKLT−xCo, x = 0, 0.005, 0.010, 0.015 and 0.020) were fabricated via the solid-state combustion technique. A small-amount of Co2+ ion substitution into Ti-sites led to modification of the phase formation, microstructure, electrical and magnetic properties of BNKLT ceramics. Coexisting rhombohedral and tetragonal phases were observed in all samples using the X-ray diffraction (XRD) technique. The Rietveld refinement revealed that the rhombohedral phase increased from 39% to 88% when x increased from 0 to 0.020. The average grain size increased when x increased. With increasing x, more oxygen vacancies were generated, leading to asymmetry in the bipolar strain (SE) hysteresis loops. For the composition of x = 0.010, a high dielectric constant (εm) of 5384 and a large strain (Smax) of 0.23% with the normalized strain (d*33) of 460 pm·V−1 were achieved. The BNKLT−0Co ceramic showed diamagnetic behavior but all of the BNKLT−xCo ceramics exhibited paramagnetic behavior, measured at 50 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.X. He, M. Gao, C.E. Li, W.M. Zhu, and H.X. Yan, Effects of Cr2O3 addition on the piezoelectric properties and microstructure of PbZrxTiy(Mg1/3Nb2/3)1−xyO3 ceramics, J. Eur. Ceram. Soc., 21(2001), No. 6, p. 703.

    Article  CAS  Google Scholar 

  2. J.J. Choi, J.H. Lee, B.D. Hahn, W.H. Yoon, and D.S. Park, Co-firing of PZN−PZT/Ag multilayer actuator prepared by tape-casting method, Mater. Res. Bull., 43(2008), No. 2, p. 483.

    Article  CAS  Google Scholar 

  3. T. Yamamoto, Ferroelectric properties of the PbZrO3−PbTiO3 system, Jpn. J. Appl. Phys., 35(1996), No. 9S, p. 5104.

    Article  CAS  Google Scholar 

  4. J.M. Li, F.F. Wang, C.M. Leung, S.W. Or, Y.X. Tang, X.M. Chen, T. Wang, X.M. Qin, and W.Z. Shi, Large strain response in acceptor- and donor-doped Bi0.5Na0.5TiO3-based lead-free ceramics, J. Mater. Sci., 46(2011), No. 17, p. 5702.

    Article  CAS  Google Scholar 

  5. A. Maqbool, A. Hussain, R.A. Malik, A. Zaman, T.K. Song, W.J. Kim, and M.H. Kim, Dielectric and ferroelectric properties of Nb doped BNT-based relaxor ferroelectrics, Korean. J. Mater. Res., 25(2015), No. 7, p. 317.

    Article  CAS  Google Scholar 

  6. G.J. Lee, B.H. Kim, S.A. Yang, J.J. Park, S.D. Bu, and M.K. Lee, Piezoelectric and ferroelectric properties of (Bi,Na)TiO3−(Bi,Li)TiO3−(Bi,K)TiO3 ceramics for accelerometer application, J. Am. Ceram. Soc., 100(2016), No. 2, p. 678.

    Article  Google Scholar 

  7. J.H. Cho, Y.H. Jeong, J.H. Nam, J.S. Yun, and Y.J. Park, Phase transition and piezoelectric properties of lead-free (Bi1/2Na1/2) TiO3−BaTiO3 ceramics, Ceram. Int., 40(2014), No. 6, p. 8419.

    Article  CAS  Google Scholar 

  8. Y.J. Dai, X.W. Zhang, and K.P. Chen, An approach to improve the piezoelectric property of (Bi0.5Na0.5)TiO3−(Bi0.5K0.5)TiO3−BaTiO3 lead-free ceramics, Int. J. Appl. Ceram. Technol., 8(2011), No. 2, p. 423.

    Article  CAS  Google Scholar 

  9. J. Shieh, K.C. Wu, and C.S. Chen, Switching characteristics of MPB compositions of (Bi0.5Na0.5)TiO3−BaTiO3−(Bi0.5K0.5)TiO3 lead-free ferroelectric ceramics, Acta Mater., 55(2007), No. 9, p. 3081.

    Article  CAS  Google Scholar 

  10. R. Sumang, D.P. Cann, N. Kumar, and T. Bongkarn, The influence of firing temperatures on the crystal structure, microstructure and dielectric properties of 0.68Bi0.5Na0.5TiO3−0.22Bi0.5 K0.5TiO3−0.10Bi0.5Li0.5TiO3Ceramics prepared via the combustion technique, Ferroelectrics, 490(2016), No. 1, p. 51.

    Article  CAS  Google Scholar 

  11. A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki, Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3−(Bi0.5K0.5)TiO3 systems, Jpn. J. Appl. Phys., 38(1999), No. Part1, p. 5564.

    Article  CAS  Google Scholar 

  12. D. Maurya, Y. Zhou, Y.K. Yan, and S. Priya, Synthesis mechanism of grain-oriented lead-free piezoelectric Na0.5Bi0.5TiO3−BaTiO3 ceramics with giant piezoelectric response, J. Mater. Chem. C, 1(2013), No. 11, art. No. 2102.

  13. K.T.P. Seifert, W. Jo, and J. Rödel, Temperature-insensitive large strain of (Bi1/2Na1/2)TiO3−(Bi1/2k1/2)TiO3−(K0.5Na0.5)NbO3 lead-free piezoceramics, J. Am. Ceram. Soc., 93(2010), No. 5, p. 1392.

    CAS  Google Scholar 

  14. P. Bhupaijit, P. Kidkhunthod, S.K. Gupta, N. Nuntawong, S. Prasertpalichat, S. Pinitsoontorn, M. Horprathum, and T. Bongkarn, Phase evolution, microstructure, electrical, and magnetic properties of Bi0.5(Na0.68K0.22Li0.10)0.5TiO3 ceramics with Fe3+ substitution, Phys. Status Solidi A, 217(2020), No. 12, art. No. 1900983.

  15. K. Thangavelu, R. Ramadurai, and S. Asthana, Evidence for the suppression of intermediate anti-ferroelectric ordering and observation of hardening mechanism in Na1/2Bi1/2TiO3 ceramics through cobalt substitution, AIP Adv., 4(2014), No. 1, art. No. 017111.

  16. S. Buntham, P. Boonsong, P. Jaiban, N. Keawprak, and A. Watcharapasorn, Effects of cobalt dopant on microstructure and electrical properties of Bi0.5Na0.5TiO3 ceramics, Chiang Mai J. Sci., 45(2018), No. 6, p. 2481.

    CAS  Google Scholar 

  17. B. Parija, T. Badapanda, P. Sahoo, M. Kar, P. Kumar, and S. Panigrahi, Structural and electromechanical study of Bi0.5Na0.5 TiO3−BaTiO3 solid-solutions, Process. Appl. Ceram., 7(2013), No. 2, p. 73.

    Article  CAS  Google Scholar 

  18. R.Z. Zuo, Z.K. Xu, and L.T. Li, Dielectric and piezoelectric properties of Fe2O3-doped (Na0.5K0.5)0.96Li0.04Nb0.86Ta0.1 Sb0.04O3 lead-free ceramics, J. Phys. Chem. Solids, 69(2008), No. 7, p. 1728.

    Article  CAS  Google Scholar 

  19. P. Kumar, M. Pattanaik, and Sonia, Synthesis and characterizations of KNN ferroelectric ceramics near 50/50 MPB, Ceram. Int., 39(2013), No. 1, p. 65.

    Article  CAS  Google Scholar 

  20. A. Verma, A.K. Yadav, N. Khatun, S. Kumar, R. Jangir, V. Srihari, V.R. Reddy, S.W. Liu, S. Biring, and S. Sen, Structural, dielectric and ferroelectric studies of thermally stable and efficient energy storage ceramic materials: (Na0.5−xKB0.5−xLax) TiO3, Ceram. Int., 44(2018), No. 16, p. 20178.

    Article  CAS  Google Scholar 

  21. X.M. Chen, H.Y. Ma, W.Y. Pan, M. Pang, P. Liu, and J.P. Zhou, Microstructure, dielectric and ferroelectric properties of (NaxBi0.5)0.94Ba0.06TiO3 lead-free ferroelectric ceramics: Effect of Na nonstoichiometry, Mater. Chem. Phys., 132(2012), No. 2–3, p. 368.

    Article  CAS  Google Scholar 

  22. A.E.R. Mahmoud, M. Ezzeldien, and S.K.S. Parashar, Enhancement of switching/un-switching leakage current and ferroelectric properties appraised by PUND method of (Ba1−xCax)TiO3 lead free piezoelectric near MPB, Solid State Sci., 93(2019), p. 44.

    Article  CAS  Google Scholar 

  23. P.Y. Chen, C.S. Chen, C.S. Tu, P.H. Chen, and J. Anthoniappen, Effects of texture on microstructure, Raman vibration, and ferroelectric properties in 92.5%(Bi0.5Na0.5)TiO3−7.5%BaTiO3 ceramics, J. Eur. Ceram. Soc., 36(2016), No. 7, p. 1613.

    Article  CAS  Google Scholar 

  24. U. Obilor, C. Pascual-Gonzalez, S. Murakami, I.M. Reaney, and A. Feteira, Study of the temperature dependence of the giant electric field-induced strain in Nb-doped BNT-BT-BKT piezoceramics, Mater. Res. Bull., 97(2018), p. 385.

    Article  CAS  Google Scholar 

  25. Q.H. Zhang, X.Y. Zhao, R.B. Sun, and H.S. Luo, Crystal growth and electric properties of lead-free NBT-BT at compositions near the morphotropic phase boundary, Phys. Status Solidi A, 208(2011), No. 5, p. 1012.

    Article  CAS  Google Scholar 

  26. I.K. Hong, H.S. Han, C.H. Yoon, H.N. Ji, W.P. Tai, and J.S. Lee, Strain enhancement in lead-free Bi0.5(Na0.78K0.22)0.5TiO3 ceramics by CaZrO3 substitution, J. Intell. Mater. Syst. Struct., 24(2013), No. 11, p. 1343.

    Article  Google Scholar 

  27. K.N. Pham, A. Hussain, C.W. Ahn, W.K. Ill, S.J. Jeong, and J.S. Lee, Giant strain in Nb-doped Bi0.5(Na0.82K0.18)0.5TiO3 lead-free electromechanical ceramics, Mater. Lett., 64(2010), No. 20, p. 2219.

    Article  CAS  Google Scholar 

  28. D.K. Kushvaha, S.K. Rout, and B. Tiwari, Structural, piezoelectric and high density energy storage properties of lead-free BNKT-BCZT solid solution, J. Alloys Compd., 782(2019), p. 270.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science, Research and Innovation Fund (NSRF) through Naresuan University (R2564B001). The authors wish to thank the Department of Physics, Faculty of Science, Naresuan University for their supporting facilities. Thanks are also given to Asst. Prof. Dr. Kyle V. Lopin for his help in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theerachai Bongkarn.

Ethics declarations

The authors declare no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhupaijit, P., Kaewsai, C., Suriwong, T. et al. Effect of Co2+ substitution in B-sites of the perovskite system on the phase formation, microstructure, electrical and magnetic properties of Bi0.5(Na0.68K0.22Li0.10)0.5TiO3 ceramics. Int J Miner Metall Mater 29, 1798–1808 (2022). https://doi.org/10.1007/s12613-021-2345-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2345-8

Keywords

Navigation