Skip to main content

Advertisement

Log in

Hydrometallurgical recycling of valuable metals from spent lithium-ion batteries by reductive leaching with stannous chloride

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The reductant is a critical factor in the hydrometallurgical recycling of valuable metals from spent lithium-ion batteries (LIBs). There is limited information regarding the use of SnCl2 as a reductant with organic acid (maleic acid) for recovering valuable metals from spent Li-CoO2 material. In this study, the leaching efficiencies of Li and Co with 1 mol·L−1 of maleic acid and 0.3 mol·L−1 of SnCl2 were found to be 98.67% and 97.5%, respectively, at 60°C and a reaction time of 40 min. We investigated the kinetics and thermodynamics of the leaching process in this study to better understand the mechanism of the leaching process. Based on a comparison with H2O2 with respect to leaching efficiency, the optimal leaching parameters, and the activation energy, we determined that it is feasible to replace H2O2 with SnCl2 as a leaching reductant in the leaching process. In addition, when SnCl2 is used in the acid-leaching process, Sn residue in the leachate may have a positive effect on the re-synthesis of nickel-rich cathode materials. Therefore, the results of this study provide a potential direction for the selection of reductants in the hydrometallurgical recovery of valuable metals from spent LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Challenges in the development of advanced Li-ion batteries: A review, Energy Environ. Sci., 4(2011), No. 9, p. 3243.

    Article  CAS  Google Scholar 

  2. Q.Y. Zhang, Y.F. Su, L. Chen, Y. Lu, L.Y. Bao, T. He, J. Wang, R.J. Chen, J. Tan, and F. Wu, Pre-oxidizing the precursors of Nickel-rich cathode materials to regulate their Li+/Ni2+ cation ordering towards cyclability improvements, J. Power Sources, 396(2018), p. 734.

    Article  CAS  Google Scholar 

  3. X.P. Chen, C.B. Luo, J.X. Zhang, J.R. Kong, and T. Zhou, Sustainable recovery of metals from spent lithium-ion batteries: A green process, ACS Sustainable Chem. Eng., 3(2015), No. 12, p. 3104.

    Article  CAS  Google Scholar 

  4. W. Song, J.W. Liu, L. You, S.Q. Wang, Q.W. Zhou, Y.L. Gao, R.N. Yin, W.J. Xu, and Z.P. Guo, Re-synthesis of nano-structured LiFePO4/graphene composite derived from spent lithium-ion battery for booming electric vehicle application, J. Power Sources, 419(2019), p. 192.

    Article  CAS  Google Scholar 

  5. Y. Yang, S.L. Song, S.Y. Lei, W. Sun, H.S. Hou, F. Jiang, X.B. Ji, W.Q. Zhao, and Y.H. Hu, A process for combination of recycling lithium and regenerating graphite from spent lithium-ion battery, Waste Manage., 85(2019), p. 529.

    Article  CAS  Google Scholar 

  6. L.Q. Zhuang, C.H. Sun, T. Zhou, H. Li, and A.Q. Dai, Recovery of valuable metals from LiNi0.5Co0.2Mn0.3O2 cathode materials of spent Li-ion batteries using mild mixed acid as leachant, Waste Manage., 85(2019), p. 175.

    Article  CAS  Google Scholar 

  7. Y.P. Fu, Y.Q. He, L.L. Qu, Y. Feng, J.L. Li, J.S. Liu, G.W. Zhang, and W.N. Xie, Enhancement in leaching process of lithium and cobalt from spent lithium-ion batteries using benzenes-ulfonic acid system, Waste Manage., 88(2019), p. 191.

    Article  CAS  Google Scholar 

  8. X.H. Zhong, W. Liu, J.W. Han, F. Jiao, W.Q. Qin, T. Liu, and C.X. Zhao, Pyrolysis and physical separation for the recovery of spent LiFePO4 batteries, Waste Manage., 89(2019), p. 83.

    Article  CAS  Google Scholar 

  9. L.P. He, S.Y. Sun, X.F. Song, and J.G. Yu, Leaching process for recovering valuable metals from the LiNi1/3Co1/3Mn1/3O2 cathode of lithium-ion batteries, Waste Manage., 64(2017), p. 171.

    Article  CAS  Google Scholar 

  10. G.X. Ren, S.W. Xiao, M.Q. Xie, B. Pan, J. Chen, F.G. Wang, and X. Xia, Recovery of valuable metals from spent lithium ion batteries by smelting reduction process based on FeO-SiO2-Al2O3 slag system, Trans. Nonferrous Met. Soc. China, 27(2017), No. 2, p. 450.

    Article  CAS  Google Scholar 

  11. X.P. Chen and T. Zhou, Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media, Waste Manage. Res., 32(2014), No. 11, p. 1083.

    Article  Google Scholar 

  12. Y. Xin, X. Guo, S. Chen, J. Wang, F. Wu, and B. Xin, Bioleaching of valuable metals Li, Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery, J. Clean Prod., 116(2016), p. 249.

    Article  CAS  Google Scholar 

  13. Y.N. Zhang, Y.Y. Zhang, Y.J. Zhang, P. Dong, Q. Meng, and M.L. Xu, Novel efficient regeneration of high-performance Li1.2[Mn0.56Ni0.16Co0.08]O2 cathode materials from spent LiMn2O4 batteries, J. Alloys Compd., 783(2019), p. 357.

    Article  CAS  Google Scholar 

  14. P.C. Liu, L. Xiao, Y.F. Chen, Y.W. Tang, J. Wu, and H. Chen, Recovering valuable metals from LiNixCoyMn1−xyO2 cathode materials of spent lithium ion batteries via a combination of reduction roasting and stepwise leaching, J. Alloys Compd., 783(2019), p. 743.

    Article  CAS  Google Scholar 

  15. Q. Meng, Y.J. Zhang, P. Dong, and F. Liang, A novel process for leaching of metals from LiNi1/3Co1/3Mn1/3O2 material of spent lithium ion batteries: Process optimization and kinetics aspects, J. Ind. Eng. Chem., 61(2018), p. 133.

    Article  CAS  Google Scholar 

  16. M. Joulié, R. Laucournet, and E. Billy, Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries, J. Power Sources, 247(2014), p. 551.

    Article  Google Scholar 

  17. S.P. Barik, G. Prabaharan, and L. Kumar, Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: Laboratory and pilot scale study, J. Cleaner Prod., 147(2017), p. 37.

    Article  CAS  Google Scholar 

  18. K. Tanong, L. Coudert, G. Mercier, and J.F. Blais, Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process, J. Environ. Manage., 181(2016), p. 95.

    Article  CAS  Google Scholar 

  19. P. Meshram, B.D. Pandey, and T.R. Mankhand, Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects, Waste Manage., 45(2015), p. 306.

    Article  CAS  Google Scholar 

  20. P. Meshram, B.D. Pandey, and T.R. Mankhand, Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching, Chem. Eng. J., 281(2015), p. 418.

    Article  CAS  Google Scholar 

  21. E.G. Pinna, M.C. Ruiz, M.W. Ojeda, and M.H. Rodriguez, Cathodes of spent Li-ion batteries: Dissolution with phosphoric acid and recovery of lithium and cobalt from leach liquors, Hydrometallurgy, 167(2017), p. 66.

    Article  CAS  Google Scholar 

  22. L.P. He, S.Y. Sun, Y.Y. Mu, X.F. Song, and J.G. Yu, Recovery of lithium, nickel, cobalt, and manganese from spent lithiumion batteries using l-tartaric acid as a leachant, ACS Sustainable Chem. Eng., 5(2017), No. 1, p. 714.

    Article  CAS  Google Scholar 

  23. J. de Oliveira Demarco, J. Stefanello Cadore, F. da Silveira de Oliveira, E. Hiromitsu Tanabe, and D. Assumpçáo Bertuol, Recovery of metals from spent lithium-ion batteries using organic acids, Hydrometallurgy, 190(2019), art. No. 105169.

  24. H. Setiawan, H.T.B.M. Petrus, and I. Perdana, Reaction kinetics modeling for lithium and cobalt recovery from spent lithium-ion batteries using acetic acid, Int. J. Miner. Metall. Mater., 26(2019), No. 1, p. 98.

    Article  CAS  Google Scholar 

  25. L. Li, E.S. Fan, Y.B. Guan, X.X. Zhang, Q. Xue, L. Wei, F. Wu, and R.J. Chen, Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system, ACS Sustainable Chem. Eng., 5(2017), No. 6, p. 5224.

    Article  CAS  Google Scholar 

  26. L. Li, W.J. Qu, X.X. Zhang, J. Lu, R.J. Chen, F. Wu, and K. Amine, Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries, J. Power Sources, 282(2015), p. 544.

    Article  CAS  Google Scholar 

  27. N. Vieceli, C.A. Nogueira, C. Guimarães, M.F.C. Pereira, F.O. Durão, and F. Margarido, Hydrometallurgical recycling of lithium-ion batteries by reductive leaching with sodium metabisulphite, Waste Manage., 71(2018), p. 350.

    Article  CAS  Google Scholar 

  28. P. Meshram, Abhilash, B.D. Pandey, T.R. Mankhand, and H. Deveci, Comparision of different reductants in leaching of spent lithium ion batteries, JOM, 68(2016), No. 10, p. 2613.

    Article  CAS  Google Scholar 

  29. W.G. Lv, Z.H. Wang, H.B. Cao, X.H. Zheng, W. Jin, Y. Zhang, and Z. Sun, A sustainable process for metal recycling from spent lithium-ion batteries using ammonium chloride, Waste Manage., 79(2018), p. 545.

    Article  CAS  Google Scholar 

  30. G. Granata, E. Moscardini, F. Pagnanelli, F. Trabucco, and L. Toro, Product recovery from Li-ion battery wastes coming from an industrial pre-treatment plant: Lab scale tests and process simulations, J. Power Sources, 206(2012), p. 393.

    Article  CAS  Google Scholar 

  31. F. Pagnanelli, E. Moscardini, G. Granata, S. Cerbelli, L. Agosta, A. Fieramosca, and L. Toro, Acid reducing leaching of cathodic powder from spent lithium ion batteries: Glucose oxidative pathways and particle area evolution, J. Ind. Eng. Chem., 20(2014), No. 5, p. 3201.

    Article  CAS  Google Scholar 

  32. Q. Meng, Y.J. Zhang, and P. Dong, A combined process for cobalt recovering and cathode material regeneration from spent LiCoO2 batteries: Process optimization and kinetics aspects, Waste Manage., 71(2018), p. 372.

    Article  CAS  Google Scholar 

  33. Y.J. Zhang, Q. Meng, P. Dong, J.G. Duan, and Y. Lin, Use of grape seed as reductant for leaching of cobalt from spent lithium-ion batteries, J. Ind. Eng. Chem., 66(2018), p. 86.

    Article  CAS  Google Scholar 

  34. L. Li, Y.F. Bian, X.X. Zhang, Q. Xue, E.S. Fan, F. Wu, and R.J. Chen, Economical recycling process for spent lithium-ion batteries and macro- and micro-scale mechanistic study, J. Power Sources, 377(2018), p. 70.

    Article  CAS  Google Scholar 

  35. X.Q. Meng, H.B. Cao, J. Hao, P.G. Ning, G.J. Xu, and Z. Sun, Sustainable preparation of LiNi1/3Co1/3Mn1/3O2-V2O5 cathode materials by recycling waste materials of spent lithium-ion battery and vanadium-bearing slag, ACS Sustainable Chem. Eng., 6(2018), No. 5, p. 5797.

    Article  CAS  Google Scholar 

  36. S. Dhiman and B. Gupta, Cyphos IL 104 assisted extraction of indium and recycling of indium, tin and zinc from discarded LCD screen, Sep. Purif. Technol., 237(2020), art. No. 116407.

  37. A. Porvali, A. Chernyaev, S. Shukla, and M. Lundström, Lithium ion battery active material dissolution kinetics in Fe(II)/Fe(III) catalyzed Cu-H2SO4 leaching system, Sep. Purif. Technol., 236(2020), art. No. 116305.

  38. B.R. Liu, Q. Huang, Y.F. Su, L.Y. Sun, T. Wu, G.G. Wang, R.M. Kelly, and F. Wu, Maleic, glycolic and acetoacetic acids-leaching for recovery of valuable metals from spent lithium-ion batteries: Leaching parameters, thermodynamics and kinetics, R. Soc. Open Sci., 6(2019), No. 9, art. No. 191061.

  39. X.P. Chen, D.Z. Kang, L. Cao, J.Z. Li, T. Zhou, and H.R. Ma, Separation and recovery of valuable metals from spent lithium ion batteries: Simultaneous recovery of Li and Co in a single step, Sep. Purif. Technol., 210(2019), p. 690.

    Article  CAS  Google Scholar 

  40. Q. Meng, Y.J. Zhang, and P. Dong, Use of electrochemical cathode-reduction method for leaching of cobalt from spent lithium-ion batteries, J. Cleaner Prod., 180(2018), p. 64.

    Article  CAS  Google Scholar 

  41. H. Ku, Y. Jung, M. Jo, S. Park, S. Kim, D. Yang, K. Rhee, E.M. An, J. Sohn, and K. Kwon, Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching, J. Hazard. Mater., 313(2016), p. 138.

    Article  CAS  Google Scholar 

  42. L. Li, Y. F. Bian, X.X. Zhang, Y.B. Guan, E.S. Fan, F. Wu, and R.J. Chen, Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching, Waste Manage., 71(2018), p. 362.

    Article  CAS  Google Scholar 

  43. C.S. dos Santos, J.C. Alves, S.P. da Silva, L. Evangelista Sita, P.R.C. da Silva, L.C. de Almeida, and J. Scarminio, A closed-loop process to recover Li and Co compounds and to resynthesize LiCoO2 from spent mobile phone batteries, J. Hazard. Mater., 362(2019), p. 458.

    Article  CAS  Google Scholar 

  44. M. Eilers-Rethwisch, M. Winter, and F.M. Schappacher, Synthesis, electrochemical investigation and structural analysis of doped Li[Ni0.6Mn0.2Co0.2−xMx]O2 (x = 0, 0.05; M = Al, Fe, Sn) cathode materials, J. Power Sources, 387(2018), p. 101.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2016YFB0100301) and the National Natural Science Foundation of China (Nos. 21875022 and U1664255).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Ly., Liu, Br., Wu, T. et al. Hydrometallurgical recycling of valuable metals from spent lithium-ion batteries by reductive leaching with stannous chloride. Int J Miner Metall Mater 28, 991–1000 (2021). https://doi.org/10.1007/s12613-020-2115-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2115-z

Keywords

Navigation