Skip to main content
Log in

Competitive precipitation behavior of hybrid reinforcements in copper matrix composites fabricated by powder metallurgy

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Copper matrix composites reinforced by in situ-formed hybrid titanium boride whiskers (TiBw) and titanium diboride particles (TiB2p) were fabricated by powder metallurgy. Microstructural observations showed competitive precipitation behavior between TiBw and TiB2p, where the relative contents of the two reinforcements varied with sintering temperature. Based on thermodynamic and kinetic assessments, the precipitation mechanisms of the hybrid reinforcements were discussed, and the formation of both TiBw and TiB2p from the local melting zone was thermodynamically favored. The precipitation kinetics were mainly controlled by a solid-state diffusion of B atoms. By forming a compact compound layer, in situ reactions were divided into two stages, where Zener growth and Dybkov growth prevailed, respectively. Accordingly, the competitive precipitation behavior was attributed to the transition of the growth model during the reaction process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I.A. Ibrahim, F.A. Mohamed, and E.J. Lavernia, Particulate reinforced metal matrix composites—A review, J. Mater. Sci., 26(1991), No. 5, p. 1137.

    Article  CAS  Google Scholar 

  2. P. Sharma, D. Khanduja, and S. Sharma Production of hybrid composite by a novel process and its physical comparison with single reinforced composites, Mater. Today Proc., 2(2015), No. 4–5, p. 2698.

    Article  Google Scholar 

  3. B.N. Sarada, P.L.S. Murthy, and G. Ugrasen, Hardness and wear characteristics of hybrid aluminium metal matrix composites produced by stir casting technique, Mater. Today Proc., 2(2015), No. 4–5, p. 2878.

    Article  Google Scholar 

  4. J.H. Gu, X.N. Zhang, and M.Y. Gu, Mechanical properties and damping capacity of (SiCp+Al2O3-SiO2f)/Mg hybrid metal matrix composite, J. Alloys Compd., 385(2004), No. 1–2, p. 104.

    Article  CAS  Google Scholar 

  5. S.Y. Sun, M.M. Wang, L.Q. Wang, J.N. Qin, W.J. Lu, and D. Zhang, The influences of trace TiB and TiC on microstructure refinement and mechanical properties of in situ synthesized Ti matrix composite, Composites Part B, 43(2012), No. 8, p. 3334.

    Article  CAS  Google Scholar 

  6. X.L. Guo, W.J. Lu, L.Q. Wang, and J.N. Qin, A research on the creep properties of titanium matrix composites rolled with different deformation degrees, Mater. Des., 63(2014), p. 50.

    Article  CAS  Google Scholar 

  7. M.J. Shen, X.J. Wang, C.D. Li, M.F. Zhang, X.S. Hu, M.Y. Zheng, and K. Wu, Effect of bimodal size SiC particulates on microstructure and mechanical properties of AZ31B magnesium matrix composites, Mater. Des., 52(2013), No. 7, p. 1011.

    Article  CAS  Google Scholar 

  8. L.J. Huang, L. Geng, and H.X. Peng, Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal, Prog. Mater. Sci., 71(2015), p. 93.

    Article  CAS  Google Scholar 

  9. Z. Li, Q. Guo, Z.Q. Li, G.L. F, D.B. Xiong, Y.S. Su, J. Zhang, and D. Zhang, Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioin-spired nanolaminated structure, Nano Lett., 15(2015), No. 12, p. 8077.

    Article  CAS  Google Scholar 

  10. M.O. Bodunrin, K.K. Alaneme, and L.H. Chown, Aluminium matrix hybrid composites: A review of reinforcement philosophies; mechanical, corrosion and tribological characteristics, J. Mater. Res. Technol., 4(2015), No. 4, p. 434.

    Article  CAS  Google Scholar 

  11. J. Singh and A. Chauhan, Characterization of hybrid aluminum matrix composites for advanced applications—A review, J. Mater. Res. Technol., 5(2016), No. 2, p. 159.

    Article  CAS  Google Scholar 

  12. L. Geng, D.R. Ni, J. Zhang, and Z.Z. Zheng, Hybrid effect of TiBw and TiCp on tensile properties of in situ titanium matrix composites, J. Alloys Compd., 463(2008), No. 1–2, p. 488.

    Article  CAS  Google Scholar 

  13. S.H. Liang, W.Z. Li, Y.H. Jiang, F. Cao, G.Z. Dong, and P. Xiao, Microstructures and properties of hybrid copper matrix composites reinforced by TiB whiskers and TiB2 particles, J. Alloy. Compd., 797(2019), p. 589.

    Article  CAS  Google Scholar 

  14. Y.H. Jiang, D. Li, S.H. Liang, and F. Liu, Phase selection of titanium boride in copper matrix composites during solidification, J. Mater. Sci., 52(2017), p. 2957.

    Article  CAS  Google Scholar 

  15. Y.H. Jiang, C. Wang, S.H. Liang, J.Q. Ren, X. Du, and F. Liu, TiB2(-TiB)/Cu in-situ composites prepared by hot-press with the sintering temperature just beneath the melting point of copper, Mater. Charact., 121(2016), p. 76.

    Article  CAS  Google Scholar 

  16. Y.H. Liang, H.Y. Wang, Y.F. Yang, Y.L. Du, and Q.C. Jiang, Reaction path of the synthesis of TiC-TiB2 in Cu-Ti-B4C system, Int. J. Refract. Met. Hard Mater., 26(2008), No. 4, p. 383.

    Article  CAS  Google Scholar 

  17. I. Ansara, A.T. Dinsdale, and M.H. Rand, Al-Mg COST507: Thermochemical Database for Light Metal Alloys, European Commission, Belgium, 1998.

    Google Scholar 

  18. D. Holland-Moritz, Short-range order and solid-liquid interfaces in undercooled metallic melts, Mater. Sci. Eng. A, 304–306(2001), p. 108.

    Article  Google Scholar 

  19. M.W. Chase, NIST-JANAF thermochemical tables for oxygen fluorides, J. Phys. Chem. Ref. Data, 25(1996), No. 2, p. 551.

    Article  CAS  Google Scholar 

  20. D. Turnbull, Formation of crystal nuclei in liquid metals, J. Appl. Phys., 21(1950), No. 10, p. 1022.

    Article  CAS  Google Scholar 

  21. C.V. Thompson and F. Spaepen, Homogeneous crystal nucleation in binary metallic melts, Acta Metall., 31(1983), No. 12, p. 2021.

    Article  CAS  Google Scholar 

  22. M. Füllgrabe, B. Ittermann, H.J. Stöckmann, F. Kroll, D. Peters, and H. Ackermann, Diffusion parameters of B in Cu determined by β-radiation-detected NMR, Phys. Rev. B, 64(2001), No. 22, art. No. 224302.

  23. V.I. Dybkov, Reaction diffusion in heterogeneous binary systems, J. Mater. Sci., 21(1986), No. 9, p. 3078.

    Article  CAS  Google Scholar 

  24. Z. Fan, Z.X. Guo, and B. Cantor, The kinetics and mechanism of interfacial reaction in sigma fibre-reinforced Ti MMCs, Composites Part A, 28(1997), No. 2, p. 131.

    Article  Google Scholar 

  25. Y. Iijima, K. Hoshino, and K.I. Hirano, Diffusion of titanium in copper, Metall. Trans. A, 8(1977), No. 6, p. 997.

    Article  Google Scholar 

  26. C. Zener, Theory of growth of spherical precipitates from solid solution, J. Appl. Phys., 20(1949), No. 10, p. 950.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. U1502274, 51834009, and 51974244).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-hui Jiang or Shu-hua Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, T., Jiang, Yh., Zhang, Xj. et al. Competitive precipitation behavior of hybrid reinforcements in copper matrix composites fabricated by powder metallurgy. Int J Miner Metall Mater 28, 1090–1096 (2021). https://doi.org/10.1007/s12613-020-2052-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2052-x

Keywords

Navigation