Skip to main content

Advertisement

Log in

Effect of Ti content on microstructure and mechanical properties of CuCoFeNi high-entropy alloys

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

We prepared (CuCoFeNi)Tix (x = 0, 0.2, 0.4, 0.6, 0.8, and 1.0) high-entropy alloys (HEAs) by vacuum arc melting and then investigated the effects of Ti on their microstructure and mechanical properties. When x was inreased to 0.6, the structure of the alloy transformed from their initial single face-centered cubic (fcc) structure into fcc+Laves mixed structure. The Laves phase was found to comprise Fe2Ti and be mainly distributed in the dendrite region. With increasing Ti content, both the Laves phase and the hardness of the alloy increased, whereas its yield and fracture strengths first increased and then decreased, reaching their highest value when x was 0.8. The (CuCoFeNi)Ti0.8 alloy exhibited the best overall mechanical properties, with yield and fracture strengths of 949.7 and 1723.4 MPa, respectively, a fracture strain of 27.92%, and a hardness of HV 461.6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Yeh, S.J. Lin, T.S. Chin, J.Y. Gan, S.K. Chen, T.T. Shun, C.H. Tsau, and S.Y. Chou, Formation of simple crystal structures in Cu–Co–Ni–Cr–Al–Fe–Ti–V alloys with multiprincipal metallic elements, Metall. Mater. Trans. A, 35(2004), No. 8, p. 2533.

    Article  Google Scholar 

  2. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Micro-structural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375–377(2004), p. 213.

    Article  Google Scholar 

  3. B. Cantor, K.B. Kim, and P.J. Warren, Novel multicomponent amorphous alloys, J. Metastable Nanocryst. Mater., 13(2002), p. 27.

    Google Scholar 

  4. B. Cantor, Multicomponent and high entropy alloys, Entropy, 16(2014), No. 9, p. 4749.

    Article  Google Scholar 

  5. N. Gao, D.H. Lu, Y.Y. Zhao, X.W. Liu, G.H. Liu, Y. Wu, G. Liu, Z.T. Fan, Z.P. Lu, and E.P. George, Strengthening of a CrMnFeCoNi high-entropy alloy by carbide precipitation, J. Alloys Compd., 792(2019), p. 1028.

    Article  CAS  Google Scholar 

  6. J.W. Yeh, Recent progress in high-entropy alloys, Ann. Chim. Sci. Mater., 31(2006), No. 6, p. 633.

    Article  CAS  Google Scholar 

  7. Z.B. Cai, G. Jin, X.F. Cui, Y. Li, Y. Fan, and J.H. Song, Experimental and simulated data about microstructure and phase composition of a NiCrCoTiV high-entropy alloy prepared by vacuum hot-pressing sintering, Vacuum, 124(2016), p. 5.

    Article  CAS  Google Scholar 

  8. Y.X. Chen, S. Zhu, X.M. Wang, B.J. Yang, G.F. Han, and L. Qiu, Microstructure evolution and strengthening mechanism of Al0.4CoCu0.6NiSix, (x = 0−0.2) high entropy alloys prepared by vacuum arc melting and copper injection fast solidification, Vacuum, 150(2018), p. 84.

    Article  CAS  Google Scholar 

  9. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299.

    Article  CAS  Google Scholar 

  10. Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Microstructure and compressive properties of multicomponent Alx(TiVCrMnFeCoNiCu)100−x high-entropy alloys, Mater. Sci. Eng. A, 454–455(2007), p. 260.

    Article  Google Scholar 

  11. Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, Appl. Phys. Lett., 90(2007), No. 18, art. No. 181904.

  12. Y.P. Lu, Y. Dong, X.Z. Gao, L. Jiang, Z.N. Chen, J.C. Jie, H.J. Kang, Y.B. Zhang, S. Guo, H.H. Ruan, Y.H. Zhao, Z.Q. Cao, and T.J. Li, Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range, Acta Mater., 124(2017), p. 143.

    Article  CAS  Google Scholar 

  13. C.Y. Hsu, T.S. Sheu, J.W. Yeh, and S.K. Chen, Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys, Wear, 268(2010), No. 5–6, p. 653.

    Article  CAS  Google Scholar 

  14. Y.Y. Chen, T. Duval, U.D. Hung, J.W. Yeh, and H.C. Shih, Microstructure and electrochemical properties of high entropy alloys—A comparison with type-304 stainless steel, Corros. Sci., 47(2005), No. 9, p. 2257.

    Article  CAS  Google Scholar 

  15. A.Y. Churyumov, A.V. Pozdniakov, A.I. Bazlov, H. Mao, V.I. Polkin, and D.V. Louzguine-Luzgin, Effect of Nb addition on microstructure and thermal and mechanical properties of Fe–Co–Ni–Cu–Cr multiprincipal-element (high-entropy) alloys in as-cast and heat-treated state, JOM, 71(2019), No. 10, p. 3481.

    Article  CAS  Google Scholar 

  16. C.W. Tsai, M.H. Tsai, J.W. Yeh, and C.C. Yang, Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy, J. Alloys Compd, 490(2010), No. 1–2, p. 160.

    Article  CAS  Google Scholar 

  17. C.D. Gómez-Esparza, K. Campos-Venegas, O. Solis-Canto, J.M. Alvarado-Orozco, J. MuñozSaldaña, J. M. Herrera-Ramírez, and R. Martínez-Sánchez, Nanohardness and microstructure of NiCoAlFeCu and NiCoAlFeCuCr alloys produced by mechanical alloying, Microsc. Microanal., 20(2014), No. S3, p. 2106.

    Article  Google Scholar 

  18. H.M. Ye, W.C. Yang, X.Z. Pang, J.B. Yang, and Y.Z. Zhan, Effect of titanium content on wear resistance of CoCuFeNiVTix high-entropy alloys, J. Guangxi Univ. Nat. Sci. Ed., 42(2017), No. 3, p. 1187.

    Google Scholar 

  19. C.J. Tong, Y.L. Chen, J.W. Yeh, S.J. Lin, S.K. Chen, T.T. Shun, C.H. Tsau, and S.Y. Chang, Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multi-principal elements, Metall. Mater. Trans. A, 36(2005), No. 4, p. 881.

    Article  Google Scholar 

  20. G. Qin, S. Wang, R.R. Chen, X. Gong, L. Wang, Y.Q. Su, J.J. Guo, and H.Z. Fu, Microstructures and mechanical properties of Nb-alloyed CoCrCuFeNi high-entropy alloys, J. Mater. Sci. Technol., 34(2018), No. 2, p. 365.

    Article  Google Scholar 

  21. A. Kumar, A.K. Swarnakar, A. Basu, and M. Chopkar, Effects of processing route on phase evolution and mechanical properties of CoCrCuFeNiSix, high entropy alloys, J. Alloys Compd., 748(2018), p. 889.

    Article  CAS  Google Scholar 

  22. X.F. Wang, Y. Zhang, Y. Qiao, and G.L. Chen, Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys, Intermetallics, 15(2007), No. 3, p. 357.

    Article  CAS  Google Scholar 

  23. Q.C. Fan, B.S. Li, and Y. Zhang, Influence of Al and Cu elements on the microstructure and properties of (FeCrNiCo)AlxCuy high-entropy alloys, J. Alloys Compd., 614(2014), p. 203.

    Article  CAS  Google Scholar 

  24. C.Y. Hsu, C.C. Juan, T.S. Sheu, S.K. Chen, and J.W. Yeh, Effect of aluminum content on microstructure and mechanical properties of AlxCoCrFeMo0.5Ni high-entropy alloys, JOM, 65(2013), No. 12, p. 1840.

    Article  CAS  Google Scholar 

  25. Y. Dong, Y.P. Lu, J.J. Zhang, and T.J. Li, Microstructure and properties of multi-component AlxCoCrFeNiTi0.5 high-entropy alloys, Mater. Sci. Forum, 745–746(2013), p. 775.

    Article  Google Scholar 

  26. Z. Chen, W.P. Chen, B.Y. Wu, X.Y. Cao, L.S. Liu, and Z.Q. Fu, Effects of Co and Ti on microstructure and mechanical behavior of Al0.75FeNiCrCo high entropy alloy prepared by mechanical alloying and spark plasma sintering, Mater. Sci. Eng. A, 648(2015), p. 217.

    Article  CAS  Google Scholar 

  27. S. Guo, Phase selection rules for cast high entropy alloys: An overview, Mater. Sci. Technol., 31(2015), No. 10, p. 1223.

    Article  CAS  Google Scholar 

  28. S. Guo and C.T. Liu, Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase, Prog. Nat. Sci. Mater. Int., 21(2011), No. 6, p. 433.

    Article  Google Scholar 

  29. O.N. Senkov and D.B. Miracle, A new thermodynamic parameter to predict formation of solid solution or intermetallic phases in high entropy alloys, J. Alloys Compd., 658(2016), p. 603.

    Article  CAS  Google Scholar 

  30. W.Y. Huo, H. Zhou, F. Fang, X.F. Zhou, Z.H. Xie, and J.Q. Jiang, Microstructure and properties of novel CoCrFeNiTax eu-tectic high-entropy alloys, J. Alloys Compd., 735(2018), p. 897.

    Article  CAS  Google Scholar 

  31. L. Liu, Y. Zhang, Z.F. Zhao, B. Wang, M.G. Qi, and J. Shang, Microstructure and mechanical properties of AlxCoCuFeNi high entropy alloys, Special Cast. Nonferrous Alloys, 36(2016), No. 6, p. 570.

    CAS  Google Scholar 

  32. S.H. Lian, W.Y. Peng, and A.S. Zhang, Research on microstructure and mechanical properties of FeCoNiAlCux high entropy alloys with multi-principal element, Hot Working Technol., 46(2017), No. 12, p. 1.

    Google Scholar 

  33. L. Liu, L.J. He, J.G. Qi, B. Wang, Z.F. Zhao, J. Shang, and Y. Zhang, Effects of Sn element on microstructure and properties of SnxAl2.5FeCoNiCu multi-component alloys, J. Alloys Compd, 654(2016), p. 327.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51604161 and 51604162) and Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance Program (No. 2019KJX10).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi-cong Ye or Dong Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Xc., Wang, T., Xu, Zy. et al. Effect of Ti content on microstructure and mechanical properties of CuCoFeNi high-entropy alloys. Int J Miner Metall Mater 27, 1326–1331 (2020). https://doi.org/10.1007/s12613-020-2024-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2024-1

Keywords

Navigation