Skip to main content
Log in

Effect of gradient temperature rolling process on promoting crack healing in Q500 heavy plates

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

To ensure the quality of heavy plate products as determined by ultrasonic inspection, it is necessary to effectively control defects such as cracks and shrinkage cavities in heavy plates. Generally, some defects such as large size cracks exist due to insufficient deformation in the center of traditionally rolled plates. Compared with the traditional rolling process, gradient temperature rolling (GTR) process can effectively increase deformation inside heavy plates. In this study, the effect of GTR on crack healing was analyzed through a comparison experiment with the uniform temperature rolling (UTR). The results show that the GTR process could increase the plastic strain inside the heavy plate and effectively promote the healing process of the preset cracks. The degrees of crack healing at the center and quarter thickness position of the steel plate via GTR were greater than twice those of the plate via UTR. The GTR process can significantly reduce the internal defects of heavy plates and improve the defect detection level of heavy plate products. Also, The GTR process results in the formation of new crystal grains in the crack region, which is crucial to crack healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H.L. Yu, X.H. Liu, X.W. Li, and A. Godbole, Crack healing in a low-carbon steel under hot plastic deformation, Metall. Mater. Trans. A, 45(2014), No. 2, p. 1001.

    Article  CAS  Google Scholar 

  2. R.S. Xin, Q.X. Ma, and W.Q. Li, Microstructure and mechanical properties of internal crack healing in a low carbon steel, Mater. Sci. Eng. A, 662(2016), p. 65.

    Article  CAS  Google Scholar 

  3. R.S. Xin, Q.X. Ma, D.D. Guo, and W.Q. Li, Restoration of impact properties of internal crack healing in a low carbon steel, Mater. Sci. Eng. A, 682(2017), p. 433.

    Article  CAS  Google Scholar 

  4. R.S. Xin, J. Kang, Q.X. Ma, S. Ren, H.L. An, J.T Yao, J. Pan, and L. Sun, Evolution behaviors and mechanisms of internal crack healing in steels at elevated temperatures, Metall. Mater. Trans. A, 49(2018), No. 10, p. 4906.

    Article  CAS  Google Scholar 

  5. X.X. Zhang, T. Lin, S.S. Zhu, S.L. Zhang, Z. Wang, and L. Ha, Effects of process conditions on crack healing in 30Cr2Ni4MoV steel during hot forging, Appl. Mech. Mater., 184–185(2012), p. 854.

    Article  Google Scholar 

  6. D.B. Wei, J.T. Han, A.K. Tieu, and Z.Y. Jiang, Simulation of crack healing in BCC Fe, Scripta Mater., 51(2004), No. 6, p. 583.

    Article  CAS  Google Scholar 

  7. D. Wei, J. Han, Z.Y. Jiang, C. Lu, and A.K. Tieu, A study on crack healing in 1045 steel, J. Mater. Process. Technol., 177(2006), No. 1–3, p. 233.

    Article  CAS  Google Scholar 

  8. W. Deng, D.W. Zhao, X.M. Qin, L.X. Du, X.H. Gao, and G.D. Wang, Simulation of central crack closing behavior during ultra-heavy plate rolling, Comput. Mater. Sci., 47(2009), No. 2, p. 439.

    Article  CAS  Google Scholar 

  9. X.K. Zhao, J.M. Zhang, S.W. Lei, and Y.N. Wang, Finite-element analysis of porosity closure by heavy reduction process combined with ultra-heavy plates rolling, Steel Res. Int., 85(2014), No. 11, p. 1533.

    Article  CAS  Google Scholar 

  10. A. Li, X. Chen, C.S. Zhang, G.D. Cui, H. Zhao, and C. Yang, A novel crack healing in steels by gas nitrocarburizing, Appl. Surf. Sci., 442(2018), p. 437.

    Article  CAS  Google Scholar 

  11. P. Cavaliere and A. Silvello, Crack repair in aerospace aluminum alloy panels by cold spray, J. Therm. Spray Technol., 26(2017), No. 4, p. 661.

    Article  CAS  Google Scholar 

  12. C. Gunter, M.P. Miles, F.C. Liu, and T.W. Nelson, Solid state crack repair by friction stir processing in 304L stainless steel, J. Mater. Sci. Technol., 34(2018), No. 1, p. 140.

    Article  Google Scholar 

  13. Y. Nie, C.J. Shang, X. Song, Y. You, C. Li, and X.L. He, Properties and homogeneity of 550-MPa grade TMCP steel for ship hull, Int. J. Miner. Metall. Mater., 17(2010), No. 2, p. 179.

    Article  CAS  Google Scholar 

  14. Z.Q. Cao, Y.P. Bao, Z.H. Xia, D. Luo, A.M. Guo, and K.M. Wu, Toughening mechanisms of a high-strength acicular ferrite steel heavy plate, Int. J. Miner. Metall. Mater., 17(2010), No. 5, p. 567.

    Article  CAS  Google Scholar 

  15. W. Yu, G.S. Li, and Q.W. Cai, Effect of a novel gradient temperature rolling process on deformation, microstructure and mechanical properties of ultra-heavy plate, J. Mater. Process. Technol., 217(2015), p. 317.

    Article  Google Scholar 

  16. B.S. Xie, Q.W. Cai, Y. Yun, G.S. Li, and Z. Ning, Development of high strength ultra-heavy plate processed with gradient temperature rolling, intercritical quenching and tempering, Mater. Sci. Eng. A, 680(2017), p. 454.

    Article  CAS  Google Scholar 

  17. G.S. Li, W. Yu, Q.W. Cai, and Z.Y. He, Effect of gradient temperature rolling (GTR) and cooling on microstructure and properties of E40-grade heavy plate, Arch. Civ. Mech. Eng., 17(2017), No. 1, p. 121.

    Article  Google Scholar 

  18. X. Chen, Q.W. Cai, B.S. Xie, Y. Yun, and Z.Y. Zhou, Simulation of microstructure evolution in ultra-heavy plates rolling process based on Abaqus secondary development, Steel Res. Int., 89(2018), No. 12, p. 1800409.

    Article  Google Scholar 

  19. G.S. Li, W. Yu, and Q.W. Cai, Investigation of the evolution of central defects in ultra-heavy plate rolled using gradient temperature process, Metall. Mater. Trans. B, 46(2015), No. 2, p. 831.

    CAS  Google Scholar 

  20. L.Y. Huang, K.S. Wang, W. Wang, K. Zhao, J. Yuan, K. Qiao, B. Zhang, and J. Cai, Mechanical and corrosion properties of low-carbon steel prepared by friction stir processing, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 202.

    Article  CAS  Google Scholar 

  21. E.L. David and H. Kazuhiro, Physical Metallurgy, 5th Ed., Elsevier, Amsterdam, 2014.

    Google Scholar 

  22. J.W. Cahn, Nucleation on dislocations, Acta Metall., 5(1957), No. 3, p. 169.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Zh., Yu, W., Chen, X. et al. Effect of gradient temperature rolling process on promoting crack healing in Q500 heavy plates. Int J Miner Metall Mater 27, 354–361 (2020). https://doi.org/10.1007/s12613-019-1855-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1855-0

Keywords

Navigation