Skip to main content
Log in

Structural and electrical properties of HCl–polyaniline–Ag composites synthesized by polymerization using Ag-coated (NH4)2S2O8 powder

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Ag nanoparticles were sputter-deposited on ammonium persulfate ((NH4)2S2O8) powder to obtain (NH4)2S2O8−Ag powder, which was used to synthesize the HCl-doped polyaniline−Ag (HCl−PANI−Ag) composite via a polymerization procedure. The Ag nanoparticles were dispersed in the HCl−PANI matrix, and their sizes mainly ranged from 3 to 6 nm. The Ag nanoparticles did not affect the structure of emeraldine salt in the composite, and they increased the ordered crystalline regions in the HCl−PANI matrix. The HCl−PANI−Ag composite had a conductivity of (6.8 ± 0.1) S/cm, which is about four times larger than that of the HCl−PANI. The charge transport mechanism in the composite is explained by the three-dimensional Mott variable-range hopping (3D-Mott-VRH).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. K. Khanna, N. Singh, S. Charan, and A. K. Viswanath, Synthesis of Ag/polyaniline nanocomposite via an in situ photo-redox mechanism, Mater. Chem. Phys., (92(2005), No. (1), p. 214.

    Article  Google Scholar 

  2. Y. O. Kang, S. H. Choi, A. Gopalan, K. P. Lee, H. D. Kang, and Y. S. Song, Tuning of morphology of Ag nanoparticles in the Ag/polyaniline nanocomposites prepared by γ-ray irradiation, J. Non-Cryst. Solids, (352(2006), No. (5), p. 463.

    Article  Google Scholar 

  3. M. M. Oliveira, E. G. Castro, C. D. Canestraro, D. Zanchet, D. Ugarte, L. S. Roman, and A. J. G. Zarbin, A simple two-phase route to silver nanoparticles/polyaniline structures, J. Phys. Chem. B, 110(2006), No. (34), p. 17063.

    Article  Google Scholar 

  4. S. Y. Jing, S. X. Xing, L. X. Yu, Y. Wu, and C. Zhao, Synthesis and characterization of Ag/polyaniline core-shell nanocomposites based on silver nanoparticles colloid, Mater. Lett., (61(2007), No. (13), p. 2794.

    Article  Google Scholar 

  5. Y. H. Lee, J. H. Park, Y. D. Jun, D. W. Kim, J. J. Lee, Y. C. Kim, and S. G. Oh, 3-Mercapto-1,2-propanediol-substituted polyaniline/Ag nanocomposites prepared by concurrent reduction and substitution chemistry, Synth. Met., 158(2008), No. 3–4, p. 143.

    Article  Google Scholar 

  6. S. Bouazza, V. Alonzo, and D. Hauchard, Synthesis and characterization of Ag nanoparticles-polyaniline composite powder material, Synth. Met., (159(2009), No. 15–16, p. 1612.

    Article  Google Scholar 

  7. N. V. Blinova, J. Stejskal, M. Trchová, I. Sapurina, and G. Ćirić-Marjanović, The oxidation of aniline with silver nitrate to polyaniline-silver composites, Polymer, (50(2009), No. (1), p. 50.

    Article  Google Scholar 

  8. J. Stejskal, M. Trchová, J. Kovářová, L. Brožová, and J. Prokeš, The reduction of silver nitrate with various polyaniline salts to polyaniline-silver composites, React. Funct. Polym., (69(2009), No. (2), p. 86.

    Article  Google Scholar 

  9. P. Bober, M. Trchová, J. Prokeš, M. Varga, and J. Stejskal, Polyaniline-silver composites prepared by the oxidation of aniline with silver nitrate in solutions of sulfonic acids, Electrochim. Acta, (56(2011), No. (10), p. 3580.

    Article  Google Scholar 

  10. P. Bober, J. Stejskal, M. Trchová, and J. Prokeš, Polyaniline- silver composites prepared by the oxidation of aniline with mixed oxidants, silver nitrate and ammonium peroxydisulfate: The control of silver content, Polymer, (52(2011), No. (26), p. 5947.

    Article  Google Scholar 

  11. P. Bober, J. Stejskal, M. Trchová, and J. Prokeš, In-situ prepared polyaniline-silver composites: Single- and two-step strategies, Electrochim. Acta, (122(2014), p. 259.

    Article  Google Scholar 

  12. P. Bober, P. Humpoliček, T. Syrový, Z. Capákova, L. Syrová, J. Hromádková, and J. Stejskal, Biological properties of printable polyaniline and polyaniline-silver colloidal dispersions stabilized by gelatin, Synth. Met., (232(2017), p. 52.

    Article  Google Scholar 

  13. F. Roussel, R. C. Y. King, M. Kuriakose, M. Depriester, A. Hadj-Sahraoui, C. Gors, A. Addad, and J. F. Brun, Electrical and thermal transport properties of polyaniline/silver composites and their use as thermoelectric materials, Synth. Met., (199(2015), p. 196.

    Article  Google Scholar 

  14. S. M. Huang, J. Q. Xu, X. Tao, X. Chen, F. Zhu, Y. Wang, R. F. Jiang, and G. F. Ouyang, Fabrication of polyaniline/silver composite coating as a dual-functional platform for microextraction and matrix-free laser desorption/ionization, Talanta (172(2017), p. 155.

    Article  Google Scholar 

  15. R. C. Liu, H. Qiu, H. Li, H. Zong, and C. Y. Fang, Fabrication and characteristics of composite containing HCl-doped polyaniline and Ni nanoparticles, Synth. Met., (160(2010), No. 23–24, p. 2404.

    Article  Google Scholar 

  16. R. C. Liu, H. Qiu, H. Zong, and C. Y. Fang, Fabrication and characterization of composite containing HCl-doped polyaniline and Fe nanoparticles, J. Nanomater., (2012(2012), p. 674104.

    Google Scholar 

  17. Y. Huang, H. Qiu, H. Qian, F. P. Wang, L. Q. Pan, P. Wu, Y. Tian, and X. L. Huang, Effect of annealing on the characteristics of Au/Ni80Fe20 and Au/Ni30Fe70 bilayer films grown on glass, Thin Solid Films, (472(2005), No. 1–2, p. 302.

    Article  Google Scholar 

  18. P. Wu, H. Qiu, Y. Q. Zhao, D. H. Jiang, B. Zhang, X. D. Zhao, X. L. Huang, L. Q. Pan, and Y. Tian, Characteristics of resistivity and structure of silver films deposited in low vacuum, Phys. Exp., (27(2007), No. (3), p. 3.

    Google Scholar 

  19. P. N. Adams, P. J. Laughlin, A. P. Monkman, and A. M. Kenwright, Low temperature synthesis of high molecular weight polyaniline, Polymer, (37(1996), No. (15), p. 3411.

    Article  Google Scholar 

  20. M. E. Jozefowicz, R. Laversanne, H. H. S. Javadi, A. J. Epstein, J. P. Pouget, X. Tang, and A. G. MacDiarmid, Multiple lattice phases and polaron-lattice-spinless-defect competition in polyaniline, Phys. Rev. B, (39(1989), No. (17), p. 12958.

    Article  Google Scholar 

  21. J. P. Pouget, M. E. Jozefowicz, A. J. Epstein, X. Tang, and A. G. MacDiarmid, X-ray structure of polyaniline, Macromolecules, 24(1991), No. (3), p. 779.

    Article  Google Scholar 

  22. C. Nath and A. Kumar, Fractal like charge transport in polyaniline nanostructures, Phys. B, (426(2013), p. 94.

    Article  Google Scholar 

  23. G. E. Asturias, A. G. MacDiarmid, R. P. McCall, and A. J. Epstein, The oxidation state of “emeraldine” base, Synth. Met., (29(1989), No. (1), p. 157.

    Article  Google Scholar 

  24. J. S. Tang, X. B. Jin, B. C. Wang, and F. S. Wang, Infrared spectra of soluble polyaniline, Synth. Met., (24(1988), No. (3), p. 231.

    Article  Google Scholar 

  25. T. D. Castillo-Castro, E. Larios-Rodriguez, Z. Molina-Arenas, M. M. Castillo-Ortega, and J. Tanori, Synthesis and characterization of metallic nanoparticles and their incorporation into electroconductive polymer composites, Compos. Part A, (38(2007), No. (1), p. 107.

    Article  Google Scholar 

  26. K. Gupta, P. C. Jana, and A. K. Meikap, Optical and electrical transport properties of polyaniline-silver nanocomposite, Synth. Met., (160(2010), No. 13–14, p. 1566.

    Article  Google Scholar 

  27. H. B. Gu, J. Guo, X. R. Yan, H. G. Wei, X. Zhang, J. R. Liu, Y. D. Huang, S. Y. Wei, and Z. H. Guo, Electrical transport and magnetoresistance in advanced polyaniline nanostructures and nanocomposites, Polymer, (55(2014), No. (17), p. 4405.

    Article  Google Scholar 

  28. M. Ghosh, A. Barman, A. K. Meikap, S. K. De, and S. Chatterjee, Hopping transport in HCl doped conducting polyaniline, Phys. Lett. A, (260(1999), No. 1–2, p. 138.

    Article  Google Scholar 

  29. A. P. Singh, S. A. Kumar, A. Chandra, and S. K. Dhawan, Conduction mechanism in Polyaniline-flyash composite material for shielding against electromagnetic radiation in X-band & Ku band, AIP Adv., (1(2011), No. 2, art. No. 022147.

    Google Scholar 

  30. S. A. Kumar, A. P. Singh, P. Saini, F. Khatoon, and S. K. Dhawan, Synthesis, charge transport studies, and microwave shielding behavior of nanocomposites of polyaniline with Ti-doped γ-Fe2O3, J. Mater. Sci., (47(2012), No. (5), p. 2461.

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate Dr. Xin Gao of the Analysis Center of School of Materials Science and Technology, University of Science and Technology Beijing for supporting with TEM observations. This work was financially supported by the Fundamental Research Funds for the Central Universities of China (No. 8220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Zhang, Yh., Ma, Js. et al. Structural and electrical properties of HCl–polyaniline–Ag composites synthesized by polymerization using Ag-coated (NH4)2S2O8 powder. Int J Miner Metall Mater 25, 1329–1334 (2018). https://doi.org/10.1007/s12613-018-1686-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-018-1686-4

Keywords

Navigation