Skip to main content
Log in

Slime coating of kaolinite on chalcopyrite in saline water flotation

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

In saline water flotation, the salinity can cause a distinguishable slime coating of clay minerals on chalcopyrite particles through its effect on their electrical double layers in aqueous solutions. In this work, kaolinite was used as a representative clay mineral for studying slime coating during chalcopyrite flotation. The flotation of chalcopyrite in the presence and absence of kaolinite in tap water, seawater, and gypsum-saturated water and the stability of chalcopyrite and kaolinite particles in slurries are presented. Zeta-potential distributions and scanning electron microscopy images were used to characterize and explain the different slime coating degrees and the different flotation performances. Kaolinite particles induced slime coating on chalcopyrite surfaces and reduced chalcopyrite floatability to the greatest extent when the pH value was in the alkaline range. At 0.24wt% of kaolinite, the chalcopyrite floatability was depressed by more than 10% at alkaline pH levels in tap water. Salinity in seawater and gypsum-saturated water compressed the electrical double layers and resulted in extensive slime coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.M. Mekonnen and A.Y. Hoekstra, Four billion people facing severe water scarcity, Sci. Adv., 2(2016), No. 2, art. No. e1500323.

  2. B. Wang and Y.J. Peng, The effect of saline water on mineral flotation - A critical review, Miner. Eng., 66-68(2014), p. 13.

    Article  Google Scholar 

  3. L.M. Shengo, S. Gaydardzhiev, and N.M. Kalenga, Assessment of water quality effects on flotation of copper-cobalt oxide ore, Miner. Eng., 65(2014), p. 145.

    Article  Google Scholar 

  4. A. Azapagic, Developing a framework for sustainable development indicators for the mining and minerals industry, J. Clean. Prod., 12(2004), No. 6, p. 639.

    Article  Google Scholar 

  5. S. Castro, Challenges in Flotation of Cu–Mo Sulfide Ores in Sea Water, J. Drelich ed., Society for Mining, Metallurgy & Exploration (SME), Englewood, 2012, p. 29.

    Google Scholar 

  6. R.I. Jeldres, L. Forbes, and L.A. Cisternas, Effect of seawater on sulfide ore flotation: A review, Miner. Process. Extr. Metall. Rev., 37(2016), No. 6, p. 369.

    Article  Google Scholar 

  7. F. Rao, I. Lázaro, and L.A. Ibarra, Solution chemistry of sulphide mineral flotation in recycled water and sea water: a review, Miner. Process. Extr. Metall., 126(2017), No. 3, p. 139.

    Article  Google Scholar 

  8. M.J. Deng, Q.X. Liu, and Z.H. Xu, Impact of gypsum supersaturated solution on surface properties of silica and sphalerite minerals, Miner. Eng., 46-47(2013), p. 6.

    Article  Google Scholar 

  9. W.Y. Liu, C.J. Moran, and S. Vink, A review of the effect of water quality on flotation, Miner. Eng., 53(2013), p. 91.

    Article  Google Scholar 

  10. A.M. Gaudin, D.W. Fuerstenau, and H.L. Miaw, Slime coatings in galena flotation, CIM Bull., 53(1960), p. 960.

    Google Scholar 

  11. O. Espinoza-Ortega, S. Song, A. Lopez-Valdivieso, F. Galindo- Murillo, and J.L. Reyes-Bahena, Regrinding and floc-flotation of silver sulphide scavenger concentrate, Miner. Process. Extr. Metall., 112(2003), No. 2, p. 90.

    Article  Google Scholar 

  12. Z.H. Xu, J.J. Liu, J.W. Choung, and Z.A. Zhou, Electrokinetic study of clay interactions with coal in flotation, Int. J. Miner. Process., 68(2003), No. 1-4, p. 183.

    Article  Google Scholar 

  13. F. Rao, F.J. Ramirez-Acosta, R.J. Sanchez-Leija, S.X. Song, and A. Lopez-Valdivieso, Stability of kaolinite dispersions in the presence of sodium and aluminum ions, Appl. Clay Sci., 51(2011), No. 1-2, p. 38.

    Article  Google Scholar 

  14. B. Triffett, C. Veloo, B.J.I. Adair, and D. Bradshaw, An investigation of the factors affecting the recovery of molybdenite in the Kennecott Utah Cooper bulk flotation circuit, Miner. Eng., 21(2008), No. 12-14, p. 832.

    Article  Google Scholar 

  15. S.M. Bulatovic, D.M. Wyslouzil, and C. Kant, Operating practices in the beneficiation of major porphyry copper/molybdenum plants from Chile: Innovated technology and opportunities, a review, Miner. Eng., 11(1998), No. 8, p. 313.

    Article  Google Scholar 

  16. M. Zhang, Y.J. Peng, and N. Xu, The effect of sea water on copper and gold flotation in the presence of bentonite, Miner. Eng., 77(2015), p. 93.

    Article  Google Scholar 

  17. A.W. Gardner and E. Glueckauf, Thermodynamic data of the calcium sulphate solution process between 0 and 200°C, Trans. Faraday Soc., 66(1970), p. 1081.

    Article  Google Scholar 

  18. A. Sze, D. Erickson, L.Q. Ren, and D.Q. Li, Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electroosmotic flow, J. Colloid Interface Sci., 261(2003), No. 2, p. 402.

    Article  Google Scholar 

  19. M.C. Fuerstenau, S. Chander, and R. Woods, Sulfide Mineral Flotation, M.C. Fuerstenau, G. Jameson, and R.H. Yoon eds., Society for Mining, Metallurgy & Exploration (SME), Colorado, 2007, p. 425.

    Google Scholar 

  20. Q. Liu and Y.H. Zhang, Effect of calcium ions and citric acid on the flotation separation of chalcopyrite from galena using dextrin, Miner. Eng., 13(2000), No. 13, p. 1405.

    Article  Google Scholar 

  21. K.K. Das, Pradip, and K.A. Natarajan, The effect of constituent metal ions on the electrokinetics of chalcopyrite, J. Colloid Interface Sci., 196(1997), No. 1, p. 1.

    Article  Google Scholar 

  22. T.X. Chen, Y.L. Zhao, and S.X. Song, Electrophoretic mobility study for heterocoagulation of montmorillonite with fluorite in aqueous solutions, Powder. Technol., 309(2017), p. 61.

    Article  Google Scholar 

  23. B.V. Derjaguin and L. Landau, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes, Prog. Surf. Sci., 43(1993), No.1-4, p. 30.

    Article  Google Scholar 

  24. J.T.G. Overbeek and E.J.W. Verwey, Theory of the Stability of Lyophobic Colloids: The Interaction of Sol Particles Having an Electric Double Layer, Dover Publications Inc., New York, 1948, p. 66.

    Google Scholar 

  25. P.C. Hiemenz and R. Rajagopalan, Principles of Colloid and Surface Chemistry, CRC press, Florida, 1997, p. 653.

    Book  Google Scholar 

  26. S. Lu, R. J. Pugh, and E. Forssberg, Interfacial Separation of Particles, Elsevier Inc., San Diego, 2005, p. 290.

    Google Scholar 

  27. F. Rao, S.X. Song, and A. Lopez-Valdivieso, Specific adsorption of chromium species on kaolinite surface, Miner. Process. Extr. Metall. Rev., 33(2012), No. 3, p. 180.

    Article  Google Scholar 

  28. Y.C. Chemeda, D. Deneele, G.E. Christidis, and G. Ouvrard, Influence of hydrated lime on the surface properties and interaction of kaolinite particles, Appl. Clay Sci., 107(2015), p. 1.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Hubei Province of China (No. 2016CFA013), the Wuhan Science and Technology Bureau of China (No. 2016070204020156), and the Consejo Nacional de Ciencia y Tecnología (CONACYT) of Mexico (No. 270186). Z.L. Li would like to thank the CONACYT for offering him scholarship (No. 717627) during his PhD studying.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Zl., Rao, F., Song, Sx. et al. Slime coating of kaolinite on chalcopyrite in saline water flotation. Int J Miner Metall Mater 25, 481–488 (2018). https://doi.org/10.1007/s12613-018-1594-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-018-1594-7

Keywords

Navigation