Skip to main content
Log in

Formation mechanism of calcium hexaluminate

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

To investigate the formation mechanism of calcium hexaluminate (CaAl12O19, CA6), the analytically pure alumina and calcia used as raw materials were mixed in CaO/Al2O3 ratio of 12.57:137.43 by mass. The raw materials were ball-milled and shaped into green specimens, and fired at 1300–1600°C. Then, the phase composition and microstructure evolution of the fired specimen were studied, and a first principle calculation was performed. The results show that in the reaction system of CaO and Al2O3, a small amount of CA6 forms at 1300°C, and greater amounts are formed at 1400°C and higher temperatures. The reaction is as follows: CaO·2Al2O3 (CA2) + 4Al2O3 → CA6. The diffusions of Ca2+ in CA2 towards Al2O3 and Al3+ in Al2O3 towards CA2 change the structures in different degrees of difficulty. Compared with the difficulty of structural change and the corresponding lattice energy change, it is deduced that the main formation mechanism is the diffusion of Ca2+ in CA2 towards Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Holtstan, Iron in hibonite: a spectroscopic study, Phys. Chem. Miner., 23(1996), No. 7, p. 452.

    Google Scholar 

  2. E.Y. Sako, M.A.L. Braulio, E. Zinngerbe, S.R. van der Laan, and V.C. Pandolfelli, In-depth microstructural evolution analyses of cement-bonded spinel refractory castables: novel insights regarding spinel and CA6 formation, J. Am. Ceram. Soc., 95(2012), p. 1732.

    Article  Google Scholar 

  3. P.G. De La Iglesia, O. García-Moreno, R. Torrecillas, and J.L. Menéndez, Influence of different parameters on calcium hexaluminate reaction sintering by spark plasma, Ceram. Int., 38(2012), No. 7, p. 5325.

    Article  Google Scholar 

  4. A. Utsunomiya, K. Tanaka, H. Morikawa, F. Marumo, and H. Kojima, Structure refinement of CaO·6Al2O3, J. Solid State Chem., 75(1988), No. 1, p. 197.

    Article  Google Scholar 

  5. J.G. Rark and A.N. Cormack, Potential models for multicomponent oxides: hexa-aluminates, Philos. Mag. B, 73(1996), No. 1, p. 21.

    Article  Google Scholar 

  6. S. Yi, Z.H. Huang, J.T. Huang, Y.G. Liu, and S.W. Zhang, Novel calcium hexaluminate/spinel-alumina composites with garded microstructures and mechanical properties, Sci. Rep., 4(2014), p. 4333.

    Google Scholar 

  7. A.H. de Aza, P. Pena, and J.S. Moya, Reactive coating of dolomite on alumina substrates, J. Eur. Ceram. Soc., 17(1997), p. 935.

    Article  Google Scholar 

  8. C. Domı́nguez, J. Chevalier, R. Torrecillas, L. Gremillard, and G. Fantozzi, Thermomechanical properties and fracture mechanisms of calcium hexaluminate, J. Eur. Ceram. Soc., 21(2001), No. 7, p. 907.

    Article  Google Scholar 

  9. L. An, H.M. Chan, and K.K. Soni, Control of calcium hexaluminate grain morphology in in-situ toughened ceramic composites, J. Mater. Sci., 31(1996), No. 12, p. 3223.

    Article  Google Scholar 

  10. L.L. Hench, D.E. Clark, and A.B. Harker, Review nuclear waste solids, J. Mater. Sci., 21(1986), p. 1457.

    Article  Google Scholar 

  11. P.E.D. Morgan and E.H. Cirlin, The magnetoplumbite crystal structure as a radwaste host, J. Am. Ceram. Soc., 65(1982), No. 7, p. c114.

    Article  Google Scholar 

  12. P.E.D. Morgan, D.R. Clarke, C.M. Jantzen, and A.B. Barker, High-alumina tailored nuclear waste ceramics, J. Am. Ceram. Soc., 64(1981), No. 5, p. 249.

    Article  Google Scholar 

  13. L.L. Huang, H.M. Meng, and J. Tang, Crystallization behavior of plasma-sprayed lanthanide magnesium hexaaluminate coatings, Int. J. Miner. Metall. Mater., 21(2014), No. 12, p. 1247.

    Article  Google Scholar 

  14. M. Fuhrer, A. Hey, and W.E. Lee, Microstructural evolution in self-forming spinal/calcium aluminate-bonded castable refractories, J. Eur. Ceram. Soc., 18(1998), No. 7, p. 813.

    Article  Google Scholar 

  15. C.F. Chan and Y.C. Ko, Effect of CaO content on the hot strength of alumina-spinal castables in the temperature range of 1000°C to1500°C, J. Am. Ceram. Soc., 81(1998), No. 11, p. 2957.

    Article  Google Scholar 

  16. W.E. Lee, W Vieira, S. Zhang, K.G. Ahari, H. Sarpoolaky, and C. Parr, Castable refractory concretes, Int. Mater. Rev., 46(2001), No. 3, p. 145.

    Article  Google Scholar 

  17. L.P. Li, Y. Yan, X.Z. Fan, Z.H. Hu, and C.Y. Zhao, Low-temperature synthesis of calcium–hexaluminate/magnesium–aluminum spinel composite ceramics, J. Eur. Ceram. Soc., 35(2015), No. 10, p. 2923.

    Article  Google Scholar 

  18. J.M. Tulliani, G. Pagès, G. Fantozzi, and L. Montanaro, Dilatometry as a tool to study a new synthesis for calcium hexaluminate, J. Therm. Anal. Calorim., 72(2003), No. 3, p. 1135.

    Article  Google Scholar 

  19. V.K. Singh and K.K. Sharma, Low-temperature synthesis of calcium hexa-aluminate, J. Am. Ceram. Soc., 84(2002), No. 4, p. 769.

    Google Scholar 

  20. G.K.D. Pushpalal, Fracture behavior of calcium aluminate-phenol resin composite, J. Mater. Sci., 35(2000), No. 35, p. 981.

    Article  Google Scholar 

  21. Y.Q. Li, Y.W. Li, S.L. Jin, and N. Li, Synthesis and its microstructure of calcium hexaluminate material by reaction sintering, Refractories, 38(2004), No. 5, p. 318.

    Google Scholar 

  22. D. Asmi and I.M. Low, Self-reinforced Ca-hexaluminate/alumina composites with graded microstructures, Ceram. Int., 34(2008), No. 2, p. 311.

    Article  Google Scholar 

  23. Y.G. Liu, L.X. Wei, M.H. Fang, X.Y. Ji, and Z.H. Huang, Fabrication and properties of calcium–hexaluminate/magnesium–aluminum spinel composites, J. Chin. Chem. Soc., 38(2010), No. 10, p. 1944.

    Google Scholar 

  24. C. Domínguez, J. Chevalier, R. Torrecillas, and G. Fantozzi, Microstructure development in calcium hexaluminate, J. Eur. Ceram. Soc., 21(2001), No. 3, p. 381.

    Article  Google Scholar 

  25. P.W. Lu, Foundation of Inorganic Material Science, Wuhan University of Technology Press, Wuhan, 1996, p. 242.

    Google Scholar 

  26. B. Cockayne and D.S. Robertson, Calcium aluminate single crystals: growth, lattice parameters and transmittance, Solid State Commun., 2(1964), No. 11, p. 359.

    Article  Google Scholar 

  27. E.R. Boyko and L.G. Wisnyi, The optical properties and structures of CaO·2Al2O3 and SrO·2Al2O3, Acta Cryst., 11(1958), p. 444.

    Article  Google Scholar 

  28. D.W. Goodwin and A.J. Lindop, The crystal structure of CaO·2Al2O3, Acta Crystallogr. Sect. B, (1970), No. B26, p. 1230.

    Article  Google Scholar 

  29. A. Altay, C.B. Carter, P. Rulis, W.Y. Ching, I. Arslan, and M.A. Gülgün, Characterizing CA2 and CA6 using ELNES, J. Solid State Chem., 183(2010), No. 8, p. 1776.

    Article  Google Scholar 

  30. A. Altay, C.B. Carter, and M.A. Gülgün, Reaction of CaAl4O7 with (0001)-oriented α-Al2O3, J. Mater. Sci., 44(2009), No. 1, p. 84.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-hong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Jh., Chen, Hy., Yan, Mw. et al. Formation mechanism of calcium hexaluminate. Int J Miner Metall Mater 23, 1225–1230 (2016). https://doi.org/10.1007/s12613-016-1342-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-016-1342-9

Keywords

Navigation