Skip to main content
Log in

La2Zr2O7 TBCs toughened by Pt particles prepared by cathode plasma electrolytic deposition

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

La2Zr2O7 thermal barrier coatings (TBCs) with dispersed Pt particles were prepared by cathode plasma electrolytic deposition (CPED) with ceramic balls added to the cathode region. Compared with the conventional CPED, when ceramic balls are used in the cathode region, the plasma discharge ignition current density decreases approximately 62-fold and the stable plasma discharges occur at the whole cathode surface. Such TBCs with a thickness of 100 μm exhibit a crack-free surface and are composed of pyrochlore-structured La2Zr2O7. Cyclic oxidation, scratching, and thermal insulation capability tests show that such TBCs not only exhibit high resistance to oxidation and spallation but also provide good thermal insulation. These beneficial effects are attributed to the excellent properties of TBCs, such as good thermal insulation because of low thermal conductivity, high-temperature oxidation resistance because of low-oxygen diffusion rate, and good mechanical properties because of the toughening effect of Pt particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Vaβen, M.O. Jarligo, T. Steinke, D.E. Mack, and D. Stöver, Overview on advanced thermal barrier coatings, Surf. Coat. Technol., 205(2010), No. 4, p. 938.

    Article  Google Scholar 

  2. R. Vaβen, H. Kaβner, A. Stuke, F. Hauler, D. Hathiramani, and D. Stöver, Advanced thermal spray technologies for applications in energy systems, Surf. Coat. Technol., 202(2008), No. 18, p. 4432.

    Article  Google Scholar 

  3. G.W. Goward, Progress in coatings for gas turbine airfoils, Surf. Coat. Technol., 108-109(1998), p. 73.

    Article  Google Scholar 

  4. X.Q. Cao, R. Vassen, and D. Stoever, Ceramic materials for thermal barrier coatings, J. Eur. Ceram. Soc., 24(2004), No. 1, p. 1.

    Article  Google Scholar 

  5. N.P. Padture, M. Gell, and E.H. Jordan, Thermal barrier coatings for gasturbine engine applications, Science, 296(2002), No. 5566, p. 280.

    Article  Google Scholar 

  6. R.A. Miller, Thermal barrier coatings for aircraft engines: history and directions, J. Therm. Spray Technol., 6(1997), p. 35.

    Article  Google Scholar 

  7. M. Gupta, N. Curry, P. Nylén, N. Markocsan, and R. Vaβen, Design of next generation thermal barrier coatings: experiments and modeling, Surf. Coat. Technol., 220(2013), p. 20.

    Article  Google Scholar 

  8. T.R. Kakuda, A.M. Limarga, T.D. Bennett, and D.R. Clarke, Evolution of thermal properties of EBPVD 7YSZ thermal barrier coatings with thermal cycling, Acta Mater., 57(2009), No. 8, p. 2583.

    Article  Google Scholar 

  9. R. Vaβen and D. Stöver, Functional Gradient Materials and Surface Layers Prepared by Fine Particles Technology, Springer, Kiev, 2001, p. 199.

    Google Scholar 

  10. A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, and F.S. Pettit, Mechanisms controlling the durability of thermal barrier coatings, Prog. Mater. Sci., 46(2001), No. 5, p. 505.

    Article  Google Scholar 

  11. A.K. Rai, M.P. Schmitt, R.S. Bhattacharya, D.M. Zhu, and D.E. Wolfe, Thermal conductivity and stability of multilayered thermal barrier coatings under high temperature annealing conditions, J. Eur. Ceram. Soc., 35(2015), No. 5, p. 1605.

    Article  Google Scholar 

  12. X.Q. Cao, R. Vassen, W. Jungen, S. Schwartz, F. Tietz, and D. Stöver, Thermal stability of lanthanum zirconate plasmasprayed coating, J. Am. Ceram. Soc., 84(2001), No. 9, p. 2086.

    Article  Google Scholar 

  13. T. Strangman, D. Raybould, A. Jameel, and W. Baker, Damage mechanisms, life prediction, and development of EBPVD thermal barrier coatings for turbine airfoils, Surf. Coat. Technol., 202(2007), No. 4, p. 658.

    Article  Google Scholar 

  14. V.K. Tolpygo, D.R. Clarke, and K.S. Murphy, Evaluation of interface degradation during cyclic oxidation of EBPVD thermal barrier coatings and correlation with TGO luminescence, Surf. Coat. Technol., 188-189(2004), p. 62.

    Article  Google Scholar 

  15. A. Rabiei and A.G. Evans, Failure mechanisms associated with the thermally grown oxide in plasmasprayed thermal barrier coatings, Acta Mater., 48(2000), No. 15, p. 3963.

    Article  Google Scholar 

  16. R. Vaβen, X. Cao, F. Tietz, D. Basu, and D. Stöver, Zirconates as new materials for thermal barrier coatings, J. Am. Ceram. Soc., 83(2000), p. 2023.

    Google Scholar 

  17. C.G. Levi, Emerging materials and processes for thermal barrier systems, Curr. Opin. Solid State Mater. Sci., 8(2004), No. 1, p. 77.

    Article  Google Scholar 

  18. J.Q. Yao, Y.D. He, D.R. Wang, H. Peng, H.B. Guo, and S.K. Gong, Thermal barrier coating bonded by (Al2O3–Y2O3)/(Y2O3-stabilized ZrO2) laminated composite coating prepared by twostep cyclic spray pyrolysis, Corros. Sci., 80(2014), p. 37.

    Article  Google Scholar 

  19. R. Bermejo, J. Pascual, T. Lube, and R. Danzer, Optimal strength and toughness of Al2O3–ZrO2 laminates designed with external or internal compressive layers, J. Eur. Ceram. Soc., 28(2008), No. 8, p. 1575.

    Article  Google Scholar 

  20. S.M.A. Shibli, F. Chacko, and C. Divya, Al2O3–ZrO2 mixed oxide composite incorporated aluminium rich zinc coatings for high wear resistance, Corros. Sci., 52(2010), No. 2, p. 518.

    Article  Google Scholar 

  21. C. Ren, Y.D. He, and D.R. Wang, Hightemperature cyclic oxidation behavior of Al2O3–YAG composite coating prepared by EPD and microwave sintering, Appl. Surf. Sci., 258(2012), No. 15, p. 5739.

    Article  Google Scholar 

  22. X.X. Ma, Y.D. He, D.R. Wang, and J. Zhang, Enhanced hightemperature corrosion resistance of (Al2O3–Y2O3)/Pt microlaminated coatings on 316L stainless steel alloy, Corros. Sci., 54(2012), p. 183.

    Article  Google Scholar 

  23. J. Yao, Y. He, D. Wang, and J. Lin, High-temperature oxidation resistance of (Al2O3–Y2O3)/(Y2O3-stabilized ZrO2) laminated coating on 8Nb–TiAl alloy prepared by a novel spray pyrolysis, Corros. Sci., 80(2014), p. 19.

    Article  Google Scholar 

  24. K. Zhang, G. Wang, Z. Wang, C. Wang, and W. Han, Fabrication and superplasticity of Al2O3/3Y-TZP laminated composite, J. Eur. Ceram. Soc., 26(2006), No. 3, p. 253.

    Article  Google Scholar 

  25. S. Nath, I. Manna, and J.D. Majumdar, Kinetics and mechanism of isothermal oxidation of compositionally graded yttria stabilized zirconia (YSZ) based thermal barrier coating, Corros. Sci., 88(2014), p. 10.

    Article  Google Scholar 

  26. L. Wang, Y. Wang, X.G. Sun, J.Q. He, Z.Y. Pan, and C.H. Wang, Thermal shock behavior of 8YSZ and double-ceramic-layer La2Zr2O7/8YSZ thermal barrier coatings fabricated by atmospheric plasma spraying, Ceram. Int., 38(2012), No. 5, p. 3595.

    Article  Google Scholar 

  27. J.Y. Li, H. Dai, X.H. Zhong, Y.F. Zhang, X.F. Ma, J. Meng, and X.Q. Cao, Lanthanum zirconate ceramic toughened by BaTiO3 secondary phase, J. Alloys Compd., 452(2008), No. 2, p. 406.

    Article  Google Scholar 

  28. X. Ma, Y. He, and D. Wang, Preparation and high-temperature properties of Au nano-particles doped α-Al2O3 composite coating on TiAl-based alloy, Appl. Surf. Sci., 257(2011), No. 3, p. 10273.

    Article  Google Scholar 

  29. J. Yao, Y. He, D. Wang, H. Peng, H. Guo, and S. Gong, Thermal barrier coatings with (Al2O3–Y2O3)/(Pt or Pt–Au) composite bond coat and 8YSZ top coat on Ni-based superalloy, Appl. Surf. Sci., 286(2013), p. 298.

    Article  Google Scholar 

  30. A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S.J. Dowey, Plasma electrolysis for surface engineering, Surf. Coat. Technol., 122(1999), No. 2-3, p. 73.

    Article  Google Scholar 

  31. E.I. Meletis, X. Nie, F.L. Wang, and J.C. Jiang, Electrolytic plasma processing for cleaning and metal-coating of steel surfaces, Surf. Coat. Technol., 150(2002), No. 2-3, p. 246.

    Article  Google Scholar 

  32. T. Paulmier, J.M. Bell, P.M. Fredericks, Development of a novel cathodic plasma/electrolytic deposition technique: Part 2. Physico-chemical analysis of the plasma discharge, Surf. Coat. Technol., 201(2007), No. 21, p. 8771.

    Article  Google Scholar 

  33. P. Gupta, G. Tenhundfeld, E.O. Daigle, and D. Ryabkov, Electrolytic plasma technology: science and engineering — an overview, Surf. Coat. Technol., 201(2007), No. 21, p. 8746.

    Article  Google Scholar 

  34. E.V. Parfenov, A. Yerokhin, R.R. Nevyantseva, M.V. Gorbatkov, C.J. Liang, and A. Matthews, Towards smart electrolytic plasma technologies: an overview of methodological approaches to process modelling, Surf. Coat. Technol., 269(2015), p. 2.

    Article  Google Scholar 

  35. Y.D. He, P. Wang, S.J. Deng, W.Z. Wang, S. Zhou, J. Zhang, and D.R. Wang, Thermal Barrier Coatings with Dispersed Noble Metal Particles Prepared by Cathode Plasma Electrolytic Deposition, Chinese Patent, Appl.201410265417.0, 2014.

    Google Scholar 

  36. F. Yang, X.F. Zhao, and P. Xiao, Thermal conductivities of YSZ/Al2O3 composites, J. Eur. Ceram. Soc., 30(2010), No. 15, p. 3111.

    Article  Google Scholar 

  37. H. Vogt and H.D. Kleinschrodt, Ohmic interelectrode voltage drop in alumina reduction cells, J. Appl. Electrochem., 33(2003), No. 7, p. 563.

    Article  Google Scholar 

  38. A.A. Dahlkild, Modelling the two-phase flow and current distribution along a vertical gas-evolving electrode, J. Fluid Mech., 428(2001), p. 249.

    Article  Google Scholar 

  39. J.M. Meek, A theory of spark discharge, Phys. Rev., 57(1940), p. 722.

    Article  Google Scholar 

  40. L. Minervini, R.W. Grimes, and K.E. Sickafus, Disorder in pyrochlore oxides, J. Am. Ceram. Soc., 83(2000), No. 8, p. 1873.

    Article  Google Scholar 

  41. H.E. Evans, Cracking and spalling of protective oxide layers, Mater. Sci. Eng. A, 120-121(1989), p. 139.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye-dong He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Sj., Wang, P., He, Yd. et al. La2Zr2O7 TBCs toughened by Pt particles prepared by cathode plasma electrolytic deposition. Int J Miner Metall Mater 23, 704–715 (2016). https://doi.org/10.1007/s12613-016-1284-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-016-1284-2

Keywords

Navigation