Skip to main content
Log in

Refinement of primary Si grains in Al–20%Si alloy slurry through serpentine channel pouring process

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

In this study, a serpentine channel pouring process was used to prepare the semi-solid Al–20%Si alloy slurry and refine primary Si grains in the alloy. The effects of the pouring temperature, number of curves in the serpentine channel, and material of the serpentine channel on the size of primary Si grains in the semi-solid Al–20%Si alloy slurry were investigated. The results showed that the pouring temperature, number of the curves, and material of the channel strongly affected the size and distribution of the primary Si grains. The pouring temperature exerted the strongest effect, followed by the number of the curves and then the material of the channel. Under experimental conditions of a four-curve copper channel and a pouring temperature of 701°C, primary Si grains in the semi-solid Al–20%Si alloy slurry were refined to the greatest extent, and the lath-like grains were changed into granular grains. Moreover, the equivalent grain diameter and the average shape coefficient of primary Si grains in the satisfactory semi-solid Al–20%Si alloy slurry were 24.4 μm and 0.89, respectively. Finally, the refinement mechanism and distribution rule of primary Si grains in the slurry prepared through the serpentine channel pouring process were analyzed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Yamagata, H. Kurita, M. Aniolek, W. Kasprzak, and J.H. Sokolowski, Thermal and metallographic characteristics of the Al?20% Si high-pressure die-casting alloy for monolithic cylinder blocks, J. Mater. Process. Technol., 199(2008), No. 1-3, p. 84.

    Article  Google Scholar 

  2. L.G. Hou, Y.H. Cai, H. Cui, and J.S. Zhang, Microstructure evolution and phase transformation of traditional cast and spray-formed hypereutectic aluminium?silicon alloys induced by heat treatment, Int. J. Miner. Metall. Mater., 17(2010), No. 3, p. 297.

    Article  Google Scholar 

  3. H.C. Liao, Y. Sun, and G.X. Sun, Effect of Al?5Ti?1B on the microstructure of near-eutectic Al?13.0%Si alloys modified with Sr, J. Mater. Sci., 37(2002), No. 16, p. 3489.

    Article  Google Scholar 

  4. W.S. Liu, R.C. Wang, C.Q. Peng, J.Y. Mo, X.W. Zhu, and J. Peng, Research progress of spray deposited high Si?Al alloys for electronic packaging, Trans. Nonferrous Met. Soc. China, 22(2012), No. 12, p. 3446.

    Google Scholar 

  5. L. Lasa and J.M. Rodriguez-Ibabe, Wear behaviour of eutectic and hypereutectic Al?Si?Cu?Mg casting alloys tested against a composite brake pad, Mater. Sci. Eng. A, 363(2003), No. 1-2, p. 193.

    Article  Google Scholar 

  6. T. Hejwowski and A. Weronski, The effect of thermal barrier coatings on diesel engine performance, Vacuum, 65(2002), No. 3-4, p. 427.

    Article  Google Scholar 

  7. M. Sheng, Z.D. Tao, P. Jia, J.F. Leng, and H.R. Geng, Effects of Y and Y combined with Al?5Ti?1B on the microstructure and mechanical properties of hypoeutectic Al?Si alloy, JOM, 67(2015), No. 2, p. 330.

    Article  Google Scholar 

  8. K. Nogita and A.K. Dahle, Effects of boron on eutectic modification of hypoeutectic Al?Si alloys, Scripta Mater., 48(2003), No. 3, p. 307.

    Article  Google Scholar 

  9. L.L. Ge, R.P. Liu, G. Li, M.Z. Ma, and W.K. Wang, Solidification of Al?50 at.%Si alloy in a drop tube, Mater. Sci. Eng. A, 385(2004), No. 1-2, p. 128.

    Article  Google Scholar 

  10. J. Schmitz, B. Hallstedt, J, Brillo, I. Egry, and M, Schick, Density and thermal expansion of liquid Al?Si alloys, J. Mater. Sci., 47(2012), No. 8, p. 3706.

    Article  Google Scholar 

  11. C. Li, C.Q. Peng, K. Yu, R.C. Wang, J. Yang, and R. Liu, Microstructure and properties of spray deposition 70%Si?Al alloy for electronic packaging applications, Trans. Nonferrous Met. Soc. China, 19(2009), No. 2, p. 303.

    Google Scholar 

  12. T. Aruna, M. Rashmi, and S. Devendra, Strength and elongation of spray formed Al?Si?Pb alloys, Int. J. Miner. Metall. Mater., 21(2014), No. 12, p. 1222.

    Article  Google Scholar 

  13. B. Yang, Y. Jiang, X.N. Ding, H.H. Zhong, and X.P. Li, Hot-pressing synthesis and characterization of Al?50%Si alloy electronic packaging mateaials, Powder Metall. Ind., 22(2012), No. 5, p. 24.

    Google Scholar 

  14. S. Nafisi and R. Ghomashchi, The microstructural characterization of semi-solid slurries, JOM, 58(2006), No. 6, p. 24.

    Article  Google Scholar 

  15. M.C. Flemings, Behavior of metal alloys in the semisolid state, Metall. Trans. A, 22(1991), No. 5, p. 957.

    Article  Google Scholar 

  16. M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, and R. Trivedi, Solidification microstructures and solid-state parallels: recent developments, future directions, Acta Mater., 57(2009), No. 4, p. 941.

    Article  Google Scholar 

  17. J.W. Zhao, S.S. Wu, L.Z. Xie, P. An, and Y.W. Mao, Effects of vibration and grain refiner on microstructure of semisolid slurry of hypoeutectic Al?Si alloy, Trans. Nonferrous Met. Soc. China, 18(2008), No. 4, p. 842.

    Article  Google Scholar 

  18. X. Li, Y.D. Li, Y. Ma, T.J. Chen, and Y. Hao, Effect of mixing ways on primary silicon of hypereutectic Al?Si alloys during controlled diffusion solidification, Chin. J. Nonferrous Met., 21(2011), No. 12, p. 3033.

    Google Scholar 

  19. R.D. Doherty and J.A. Szpunar, Kinetics of sub-grain coalescence: a reconsideration of the theory, Acta Metall., 32(1984), No. 10, p. 1789.

    Article  Google Scholar 

  20. A. Mazahery and M.O. Shabani, Modification mechanism and microstructural characteristics of eutectic Si in casting Al?Si alloys: a review on experimental and numerical studies, JOM, 66(2014), No. 5, p. 726.

    Article  Google Scholar 

  21. J.V. Goñi, J.M. Rodriguez-Ibabe, and J.J. Urcola, Strength and toughness of semi-solid processed hypereutectic Al/Si alloys, Scripta Mater., 34(1996), No. 3, p. 483.

    Google Scholar 

  22. J.F. Jiang, X. Lin, Y. Wang, J.J. Qu, and S.J. Luo, Microstructural evolution of AZ61 magnesium alloy predeformed by ECAE during semisolid isothermal treatment, Trans. Nonferrous Met. Soc. China, 22(2012), No. 3, p. 555.

    Article  Google Scholar 

  23. Z. Liu, W.M. Mao, and Z.D. Zhao, Research on semi-solid slurry of a hypoeutectic Al?Si alloy prepared by low superheat pouring and weak electromagnetic stirring, Rare Met., 25(2006), No. 2, p. 177.

    Article  Google Scholar 

  24. Z.Y. Liu, Preparation of Semi-solid Slurry by the Serpentine Channel and Rheo-diecasting Process of A380 Aluminum Alloy [Dissertation], University of Science and Technology Beijing, Beijing, 2015, p. 61.

    Google Scholar 

  25. R.P. Liu, D.M. Herlach, M. Vandyoussefi, and A.L. Greer, Morphologies of silicon crystals solidified on a chill plate, Metall. Mater. Trans. A, 35(2004), No. 3, p. 1067.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-min Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Zk., Mao, Wm., Liu, Zy. et al. Refinement of primary Si grains in Al–20%Si alloy slurry through serpentine channel pouring process. Int J Miner Metall Mater 23, 572–580 (2016). https://doi.org/10.1007/s12613-016-1268-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-016-1268-2

Keywords

Navigation