Skip to main content

Advertisement

Log in

Leaching of the residue from the dry off-gas de-dusting and desulfurization process of an iron ore sinter plant

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The residue from a second-stage dry sinter plant off-gas cleaning process contains both the fine dust from the sinter plant and the sorbent used. Recycling of the material that is usually handled by landfills to the sinter plant feed is not possible because of its chloride content. Leaching of the chlorides allow the recycling of remaining solids. The saline leachate produced contains some heavy metals and must be treated before it is discharged into the sea. In laboratory experiments, leaching tests with the subsequent treatment of the leachate were conducted. After the process was optimized, all heavy-metal concentrations were below the permissible values. The optimum treatment conditions for heavy-metal precipitation were observed to be the filtration of the suspended solids followed by the dosing of liquid with lime milk (pH 10) and the subsequent precipitation using sodium sulfide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Remus, M.A. Aguado-Monsonet, S. Roudier, and L.D. Sancho, Best Available Techniques (BAT) Reference Document for Iron and Steel Production, Industrial Emissions Directive 2010/75/EU, Integrated Pollution Prevention and Control, Publications Office of the European Union, Luxembourg, 2013, p. 98.

    Google Scholar 

  2. H.P. Eisen, J. Groß, K.R. Hüsig, K. Kersting, and K.H. Stedem, Reduction of dust emissions in German sinter plants, [in] Proceedings of the 3rd International Ironmaking Congress, Gent, 1996, p.165.

    Google Scholar 

  3. C. Delwig, W. Hartig, M. Hoffmann, and H.B. Lüngen, Developments in sinter technology, Stahl Eisen, 127(2007), No. 6–7, p. S51.

    Google Scholar 

  4. E. Guerriero, A. Guarnieri, S. Mosca, G. Rossetti, and M. Rotatori, PCDD/Fs removal efficiency by electrostatic precipitator and wetfine scrubber in an iron ore sintering plant, J. Hazard. Mater., 172(2009), No. 2–3, p. 1498.

    Article  Google Scholar 

  5. N. Menad, H. Tayibi, F.G. Carcedo, and A. Hernández, Minimization methods for emissions generated from sinter strands: a review, J. Clean. Prod., 14(2006), No. 8, p. 740.

    Article  Google Scholar 

  6. C. Lanzerstorfer, A. Fleischanderl, T. Plattner, W. Ehler, and E. Zwittag, Emissionsminderung bei Eisenerz-Sinteranlagen, VDI Berichte 2035, VDI Verlag, Düsseldorf, 2008, p. 161.

    Google Scholar 

  7. J. Leroy, E. Ravier, and A. Wajs, New abatement technique of the atmospheric emissions of large sinter plant: first results of industrial pilot in Arcelor’s Fos-sur-Mer, [in] Proceedings of Dust conference 2007, Maastricht, 2007, p. S2.

    Google Scholar 

  8. Z.J. Yu, Q.Y. Li, H.J. Xu, and C.Y. Lin, Design and Application of the Dry-FGD process in Sanming Steel No. 2 Sintering Plant, [in] K.P. Yan ed., Electrostatic Precipitation, Springer, Berlin, 2009, p. 620.

    Google Scholar 

  9. A. Fleischanderl, R. Neuhold, G. Meierhofer, and C. Lanzerstorfer, Improved dry-type gas-cleaning process for the treatment of sinter offgas, [in] Proceedings of the Iron and Steelmaking Conference, Linz, 2006, p. 1.

    Google Scholar 

  10. W. Hartig, M. Hoffmann, F. Reufer, and H. Weissert, Commissioning and first operational results of the new gas cleaning installation with the PAUL WURTH entrained flow absorber (EFA) at ROGESA No. 3 sinter plant, [in] Proceedings of the 7th International Metallurgical Technology Trade Fair with Congress, Düsseldorf, 2007, p. 322.

    Google Scholar 

  11. E. Schuster, J. Zirngast, and M. Zahn, Experiences with flue-gas cleaning by bag filter at the sinter strand of voestalpine stahl Donawitz, [in] Proceedings of the International Conference on Clean Technologies in the Steel Industry, Balatonfüred, 2005, p. 292.

    Google Scholar 

  12. J. Höltje and H.J. Korte, Verfahren zur trockenen Rauchgasreinigung für Abfallverbrennungsanlagen und andere industrielle Prozesse, VDI Berichte 1241, VDI Verlag, Düsseldorf, 1996, p. 127.

    Google Scholar 

  13. A. Fleischanderl, Improved dry-type gas-cleaning process for the treatment of sinter offgas, Metall. Plant Technol. Int., 29(2006), No. 3, p. 36.

    Google Scholar 

  14. W. Gebert, Abgasreinigungssysteme für Sinteranlagen [Dissertation], Universität Kaiserslautern, Kaiserslautern, 1996, p.16.

    Google Scholar 

  15. S.Q. Xu, J.G. Liu, and M.Y. Song, Water-washing of iron-ore sintering gas cleaning residue for beneficial reutilization as secondary construction material, Procedia Environ. Sci., 16(2012), p. 244.

    Article  Google Scholar 

  16. R. Beck, Natriumhaltige Reaktionsprodukte aus der Abluftreinigung lassen sich nutzen, WLB Wasser, Luft und Boden, 1999, No. 1–2, p. 59.

    Google Scholar 

  17. T.H.P. Leuwerink and A.L.J. van der Panne, Reduced emissions from Hoogovens Sinter and Pellet Plants, [in] IISI Seminar on Sinter and Pellets, Brussels, 1999, p. 176.

    Google Scholar 

  18. A. Smit, T.H.P. Leuwerink, A.L.J. van der Panne, W. Gebert, C. Lanzerstorfer, H. Riepl, and K. Hofstadler, Reduction of dioxin emission from Hoogovens Sinter Plant with the AIR-FINE® system, Organohalogen Compd., 40(1999), p. 441.

    Google Scholar 

  19. F. Fu and Q. Wang, Removal of heavy metal ions from wastewater: a review, J. Environ. Manage., 92(2011), No. 3, p. 407.

    Article  Google Scholar 

  20. M.A. Barakat, New trends in removing heavy metals from industrial wastewater, Arab. J. Chem., 4(2011), No. 4, p. 361.

    Article  Google Scholar 

  21. DIN EN ISO 60, Kunststoffe, Bestimmung der scheinbaren Dichte von Formmassen, die durch einen genormten Trichter abfließen können (Schüttdichte), Österreichisches Normungsinstitut, Wien, 1999.

    Google Scholar 

  22. L. Charerntanyarak, Heavy metals removal by chemical coagulation and precipitation, Water Sci. Technol., 39(1999), No. 10–11, p. 135.

    Article  Google Scholar 

  23. C.L. Beh, T.G. Chuah, M.N. Nourouzi, and T. Choong, Removal of heavy metals from steel making waste water by using electric arc furnace slag, E-J. Chem., 9(2012), No. 4, p. 2557.

    Article  Google Scholar 

  24. B. Decostere, J. Hogie, P. Dejans, and S.W.H. Van Hulle, Removal of heavy metals occurring in the washing water of flue gas purification, Chem. Eng. J., 150(2009), No. 1, p. 196.

    Article  Google Scholar 

  25. T. Leuwerink and A. van der Panne, Operating results of emission optimized sintering with airfine gas cleaning, Stahl Eisen, 121(2001), No. 5, p. 29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Lanzerstorfer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanzerstorfer, C., Xu, Q. & Neuhold, R. Leaching of the residue from the dry off-gas de-dusting and desulfurization process of an iron ore sinter plant. Int J Miner Metall Mater 22, 116–121 (2015). https://doi.org/10.1007/s12613-015-1051-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-015-1051-9

Keywords

Navigation