Skip to main content
Log in

A ternary TiO2/WO3/graphene nanocomposite adsorbent: facile preparation and efficient removal of Rhodamine B

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Ternary TiO2/WO3/graphene (TWG) nanocomposites were prepared by a facile salt-ultrasonic assisted hydrothermal method. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption-desorption. Both anatase TiO2 and orthorhombic WO3 formed in the nanocomposites, along with a highly disordered overlay of individual graphene nanosheets. Polyhedral and spherical TiO2 and WO3 nanoparticles of uniform size 10–30 nm were densely anchored to the graphene sheets. The maximum specific surface area of the products was 144.59 m2·g−1. The products showed clear abilities for the removal of Rhodamine B in the absence of illumination. Furthermore, the adsorption activity of the products exhibited only a slight decrease after three successive cycles. The results demonstrate that the ternary nanocomposites could be used as a high-efficiency adsorbent for the removal of environmental contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Al-Ghouti, M.A.M. Khraisheh, S.J. Allen, and M.N. Ahmad, The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth, J. Environ. Manage., 69(2003), No. 3, p. 229.

    Article  Google Scholar 

  2. L. Zhou, C. Gao, and W.J. Xu, Magnetic dendritic materials for highly efficient adsorption of dyes and drugs, ACS Appl. Mater. Interfaces, 2(2010), No. 5, p. 1483.

    Article  Google Scholar 

  3. M. Miyauchi, A. Nakajima, T. Watanabe, and K. Hashimoto, Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films, Chem. Mater., 14(2002), No. 6, p. 2812.

    Article  Google Scholar 

  4. M.D. Hernández-Alonso, F. Fresno, S. Suárez, and J.M. Coronado, Development of alternative photocatalysts to TiO2: challenges and opportunities, Energy Environ. Sci., 2(2009), p. 1231.

    Article  Google Scholar 

  5. Y.K. Kim, R. Rousseau, B.D. Kay, J.M. White, and Z. Dohnálek, Catalytic dehydration of 2-propanol on (WO3)3 clusters on TiO2(110), J. Am. Chem. Soc., 130(2008), No. 15, p. 5059.

    Article  Google Scholar 

  6. J.H. Pan and W.I. Lee, Preparation of highly ordered cubic mesoporous WO3/TiO2 films and their photocatalytic properties, Chem. Mater., 18(2006), No. 3, p. 847.

    Article  Google Scholar 

  7. H. Tada, Q. Jin, H. Nishijima, H. Yamamoto, M. Fujishima, S. Okuoka, T. Hattori, Y. Sumida, and H. Kobayashi, Titanium( IV) dioxide surface-modified with iron oxide as a visible light photocatalyst, Angew. Chem., 123(2011), No. 15, p. 3563.

    Article  Google Scholar 

  8. T. He, Y. Ma, Y.A. Cao, X.L. Hu, H.M. Liu, G.J. Zhang, W.S. Yang, and J.N. Yao, Photochromism of WO3 colloids combined with TiO2 nanoparticles, J. Phys. Chem. B, 106(2002), No. 49, p. 12670.

    Article  Google Scholar 

  9. Y. Zhu, X.T. Su, C. Yang, X.Q. Gao, F. Xiao, and J.D. Wang, Synthesis of TiO2-WO3 nanocomposites as highly sensitive benzene sensors and high efficiency adsorbents, J. Mater. Chem., 22(2012), No. 5, p. 13914.

    Article  Google Scholar 

  10. M. Nolan, Surface modification of TiO2 with metal oxide nanoclusters: a route to composite photocatalytic materials, Chem. Commun., 47(2011), p. 8617.

    Article  Google Scholar 

  11. D.Q. Zhang, G.S. Li, H.X. Li, and Y.F. Lu, The development of better photocatalysts through composition and structure engineering, Chem. Asian J., 8(2013), No. 1, p. 26.

    Article  Google Scholar 

  12. X.Q. An and J.C. Yu, Graphene-based photocatalytic composites, RSC Adv., 1(2011), p. 1426.

    Article  Google Scholar 

  13. Q.J. Xiang, J.G. Yu, and M. Jaroniec, Graphene-based semiconductor photocatalysts, Chem. Soc. Rev., 41(2012), p. 782.

    Article  Google Scholar 

  14. J.X. Low, J.G. Yu, Q. Li, and B. Cheng, Enhanced visible-light photocatalytic activity of plasmonic Ag and graphene co-modified Bi2WO6 nanosheets, Phys. Chem. Chem. Phys., 16(2014), p. 1111.

    Article  Google Scholar 

  15. H.T. Gao, X.H. Li, J. Lv, and G.J. Liu, Interfacial charge transfer and enhanced photocatalytic mechanisms for the hybrid graphene/anatase TiO2(001) nanocomposites, J. Phys. Chem. C, 117(2013), No. 31, p. 16022.

    Article  Google Scholar 

  16. X.Y. Zhang, H.P. Li, X.L. Cui, and Y.H. Lin, Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting, J. Mater. Chem., 20(2010), p. 2801.

    Article  Google Scholar 

  17. Q.J. Xiang, J.G. Yu, and M. Jaroniec, Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets, Nanoscale, 3(2011), p. 3670.

    Article  Google Scholar 

  18. Q.J. Xiang, J.G. Yu, and M. Jaroniec, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles, J. Am. Chem. Soc., 134(2012), No. 15, p. 6575.

    Article  Google Scholar 

  19. Z.Y. Zhang, F. Xiao, Y.L. Guo, S. Wang, and Y.Q. Liu, One-pot self-assembled three-dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities, ACS Appl. Mater. Interfaces, 5(2013), No. 6, p. 2227.

    Article  Google Scholar 

  20. H.P. Cong, X.C. Ren, P. Wang, and S.H. Yu, Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process, ACS Nano, 6(2012), No. 3, p. 2693.

    Article  Google Scholar 

  21. W.S. Hummers Jr. and R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80(1958), No. 6, p. 1339.

    Article  Google Scholar 

  22. X.M. Luo, F.F. Liu, X.H. Li, H.T. Gao, and G.J. Liu, WO3/TiO2 nanocomposites: salt-ultrasonic assisted hydrothermal synthesis and enhanced photocatalytic activity, Mater. Sci. Semicond. Process., 16(2013), p. 1613.

    Article  Google Scholar 

  23. W.S. Wang, D.H. Wang, W.G. Qu, L.Q. Lu, and A.W. Xu, Large ultrathin anatase TiO2 nanosheets with exposed {001} facets on graphene for enhanced visible light photocatalytic activity, J. Phys. Chem. C, 116(2012), No. 37, p. 19893.

    Article  Google Scholar 

  24. C. Nethravathi, B. Viswanath, C. Shivakumara, N. Mahadevaiah, and M. Rajamathi, The production of smectite clay/graphene composites through delamination and co-stacking, Carbon, 46(2008), No. 13, p. 1773.

    Article  Google Scholar 

  25. J.H. Pan, H.Q. Dou, Z.G. Xiong, C. Xu, J.Z. Ma, and X.S. Zhao, Porous photocatalysts for advanced water purifications, J. Mater. Chem., 20(2010), p. 4512.

    Article  Google Scholar 

  26. R.X. Chen, J.G. Yu, and W. Xiao, Hierarchically porous MnO2 microspheres with enhanced adsorption performance, J. Mater. Chem. A., 1(2013), p. 11682

    Article  Google Scholar 

  27. J.J. Fan, W.Q. Cai, and J.G. Yu, Adsorption of N719 dye on anatase TiO2 nanoparticles and nanosheets with exposed (001) facets: equilibrium, kinetic, and thermodynamic studies, Chem. Asian J., 6(2011), No. 9, p. 2481.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang-jun Liu or Hong-tao Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Yq., Li, Xh., Lü, J. et al. A ternary TiO2/WO3/graphene nanocomposite adsorbent: facile preparation and efficient removal of Rhodamine B. Int J Miner Metall Mater 21, 813–819 (2014). https://doi.org/10.1007/s12613-014-0975-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-014-0975-9

Keywords

Navigation